首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Phosphodiester antisense oligodeoxynucleotides (ODNs) directed against various domains of the cloned mouse δ receptor DOR-1 reduce δ-opioid receptor binding in vivo and in vitro. The present study examines the stability of an antisense ODN (275 n M ) directed against the δ-opioid receptor and its effect on DOR-1 mRNA in cultured neuroblastoma cells and in vivo. When added to NG108-15 cells, much of the antisense ODN is degraded. However, >1% is intact, associated with cells, and stable for at least 72 h. Northern blot analysis demonstrates that treatment of NG108-15 cells with the antisense ODN reduces the levels of a species of DOR-1 mRNA by ∼25%. Similarly, intrathecal administration of the antisense ODN results in the accumulation of intact ODN within the spinal cord, which is stable for at least 72 h, although the levels of accumulation in vivo are lower than in vitro after either 4 or 72 h. Antisense ODN treatment lowers DOR-1 mRNA levels by ∼25%. The loss of mRNA both in vivo and in vitro corresponds quite well to the decreases in receptor binding previously observed by our laboratory and is consistent with reduction of δ-opioid receptor protein in vitro as determined by western blot with a monoclonal antibody selective for the δ-opioid receptor. In conclusion, these studies indicate that a small, but significant, proportion of ODN is taken up by cells and remains intact for up to 72 h. This appears to be sufficient to down-regulate mRNA levels of δ-opioid receptors and their expression.  相似文献   

2.
3.
Antisense strategies targeting skin conditions are attractive in concept, with a number of possible pathologic conditions, such a psoriasis, apparently suitable for such an approach. Because in vitro screening of candidate sequences is usually desirable, we have attempted to use a range of new generation cationic lipids to produce significant antisense oligodeoxynucleotide (ODN) uptake in an immortalized keratinocyte cell line (HaCaT). A large number of commercially available lipids were screened for the ability to induce nuclear ODN localization: Tfx-50, Tfx-20, Tfx-10, Superfect, Cytofectin GSV, Perfect lipids 1-8, Lipofectin, and Lipofectamine. All lipids were used at a range of concentrations (1-20 microg/ml) and with a range of ODN concentrations (1-1000) nM). Of all lipids used, only Cytofectin GSV and Superfect produced significant (>30% of cells) levels of nuclear positive cells, with Superfect also producing significant toxicity at the effective concentration used. Only two treatments produced a significant reduction in target mRNA: insulin-like growth factor-1 receptor (IGF-1R)-ODN 64 complexed with Cytofectin GSV (27.1% +/- 3.5% of IGF-1R mRNA in untreated cells,p < 0.01) and ODN 64 complexed with 10 microg/ml Lipofectin (62.2% +/- 3.4% of IGF-1R mRNA in untreated cells, p < 0.05). Only one treatment, ODN 64 complexed with Cytofectin GSV, produced a reduction in cell growth and survival as assessed by amido black assay. These results demonstrate that in HaCaT keratinocytes, Cytofectin GSV alone of all commercially available cationic lipids was effective in delivering antisense ODN into cell nuclei such that a profound antisense effect could be demonstrated.  相似文献   

4.
We previously reported that superoxide dismutase (SOD) blocked human monocyte oxidation of LDL and therefore concluded that superoxide anion (O(2)(.-)) was required for oxidation. Others, however, have suggested that SOD may inhibit by mechanisms alternative to the dismutation of O(2)(.-). This study definitively addresses the involvement of O(2)(.-) in monocyte oxidation of LDL. Using an antisense ODN designed to target p47phox mRNA, we found that treatment of monocytes with antisense ODN caused a substantial and selective decrease in expression of p47phox protein, whereas sense ODN was without effect. Corresponding functional assays demonstrated that antisense ODN inhibited production of O(2)(.-). As sense ODN caused no inhibition of O(2)(.-) production, these results suggested that inhibition of p47phox expression caused reduction in O(2)(.-) production. Evaluation of the contribution of O(2)(.-) production to monocyte-mediated oxidation of LDL lipids confirmed that O(2)(.-) production is required for LDL lipid oxidation as antisense ODN treatment significantly inhibited LDL oxidation whereas sense ODN treatment caused no inhibition. This is the first report of the reduction of NADPH oxidase activity in intact human monocytes by directly targeting the mRNA of a significant member of this enzyme complex. Our results provide convincing data that O(2)(.-) is indeed required for monocyte-mediated LDL oxidation.  相似文献   

5.
6.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

7.
Our previous studies have found that reducing expression of myeloid zinc finger-1 (MZF-1) inhibited protein kinase C alpha (PKCalpha) expression and decreased cell migration and invasion in human hepatocellular carcinoma (HCC). In this study, we further investigated the role of MZF-1 in tumorigenesis. The SK-Hep-1 HCC cells were transfected with the antisense oligonucleotide (ODN) of MZF-1. The pretreated cells was then detected the mRNA and protein levels by RT-PCR and western blotting, and the cell growth was assayed by MTT. Meanwhile, the pretreated-SK-Hep-1 HCC cells were implanted subcutaneously into nude mice to observe the tumor growth and calculated tumor inhibitory rate. The results showed that, at the dosage of 5 microM, the antisense ODN MZF-1 suppressed both MZF-1 and PKCalpha productions by SK-Hep-1 HCC cells after cationic liposome-mediated transfection, to 15% and 30% in control cultures of 0 microM dosage, respectively. The growth of SK-Hep-1 HCC cells was inhibited by the 2-5 microM doses of the antisense ODN MZF-1, whereas the control reagent, the sense ODN MZF-1, showed no effects. In BALB/nude mice, SK-Hep-1 HCC cells pretreated with the 5 microM antisense ODN MZF-1 formed tumors much smaller than the cells with sense ODN. The mean of inhibitory rate of tumor growth was 71.2 +/- 8.6%, and the tumor formation time was prolonged from 14 days to 26 days. These findings suggested the usefulness of antisense ODN MZF-1 as a new reagent for cancer therapy.  相似文献   

8.
The role of Syk kinase in Fc gamma receptor (Fc gamma R) IIA-mediated phagocytosis was examined with two forms of antisense oligodeoxynucleotides (ODNs) designed to hybridize to human Syk mRNA. Monocytes were incubated with linear and stem-loop antisense ODNs targeted to Syk mRNA. When complexed with cationic liposomes, stem-loop Syk antisense ODN with phosphorothioate modification exhibited stability in fetal bovine and human serum. The stem-loop Syk antisense ODN at a concentration of 0.2 microM inhibited Fc gamma RIIA-mediated phagocytosis by 90% and completely eliminated Syk mRNA and protein in monocytes, whereas scrambled-control ODNs had no effect. The Syk antisense ODNs did not change beta-actin mRNA levels and Fc gamma RII cell-surface expression. In addition, stem-loop Syk antisense ODN inhibited Fc gamma RI and Fc gamma RIIIA-mediated phagocytosis. These data indicate the efficacy of stem-loop Syk antisense ODN for targeting and degrading Syk mRNA and protein and the importance of Syk kinase in Fc gamma receptor-mediated phagocytosis. Immunoblotting assay demonstrated that Fc gamma RII tyrosine phosphorylation after Fc gamma RII cross-linking did not change in the absence of Syk protein. These results indicate that Syk kinase is required for Fc gamma RIIA-mediated phagocytic signaling and that Fc gamma RII cross-linking leads to tyrosine phosphorylation of Fc gamma RII independent of Syk kinase.  相似文献   

9.
IGF-I-dependent decreases in endogenous GH mRNA expression were studied in individual rat MtT/S somatotroph cells using in situ hybridization. It was first shown that increasing IGF-I concentrations (0-90 nM) decreased GH mRNA levels in a ultrasensitive manner when averaged over the entire population, such that the decrease occurred over a narrow range of IGF-I concentration with an EC50 of 7.1 nM. The degree of ultrasensitivity of the population average was expressed by calculating the Hill coefficient (nA), which had a value of -2.0. GH mRNA levels in individual dispersed cells from these cultures were then measured. These results were first summed for all cells to show that the average response of the population remained ultrasensitive (nA = -2.6, EC50 = 8.1 nM). Then, parameters for individual cells of the population were calculated using mathematical modeling of the distribution of individual cell GH mRNA levels after treatment with 0-90 nM IGF-I. Solution of the data from the individual cells yielded a Hill coefficient (nI = -0.65) and a heterogeneity coefficient (mI = -1.2) indicative of individual cell responsiveness to IGF-I that was not ultrasensitive and very heterogeneous. These results suggested that ultrasensitivity in the population may likely be caused by an extracellular mechanism regulating IGF-I concentrations, such as IGF binding proteins. Increasing concentrations of long (Arg)3IGF-1, an analog that binds the IGF type-1 receptor but not IGF binding proteins, showed a linear inhibition of GH mRNA levels. Treatment with IGF binding protein ligand inhibitor, an IGF-I analog that binds to IGF binding proteins but not the IGF type-1 receptor, decreased GH mRNA levels in the absence of exogenous IGF-I. Thus, IGF binding proteins provide the extracellular sequestration of IGF-I necessary for the precise and ultrasensitive regulation of GH mRNA levels in the entire cell population, although expression within individual cells is regulated in a graded fashion.  相似文献   

10.
11.
12.
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA triplet resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif.  相似文献   

13.
Antisense oligonucleotides (ODN) targeted to specific genes have shown considerable potential as therapeutic agents. The polyanionic charges carried by these molecules, however, present a barrier to efficient cellular uptake and consequently their biological effects on gene regulation are compromised. To overcome this obstacle, a rationally designed carrier system is desirable for antisense delivery. This carrier should assist antisense ODN penetrate the cell membrane and, once inside the cell, then release the ODN and make them available for target binding. We have developed a carrier formulation employing programmable fusogenic vesicles (PFV) as the antisense delivery mediator. This study investigates the intracellular fate of PFV–ODN and bioavailability of antisense ODN to cells. The subcellular distribution of PFV and ODN was examined by monitoring the trafficking of FITC-labeled ODN and rhodamine/phosphatidylethanolamine (Rh-PE)-labeled PFV using confocal microscopy. Fluorescently tagged ODN were first co-localized with the liposomal carrier in the cytoplasm, presumably in endosome/lysosome compartments, shortly after incubation of PFV–ODN with HEK 293 and 518A2 cells. Between 24 and 48 h incubation, however, separation of FITC–ODN from the carrier and subsequent accumulation in the nucleus was observed. In contrast, the Rh-PE label was localized to the cell cytoplasm. The enhanced cellular uptake achieved using the PFV carrier, compared to incubation of free ODN with cells, and subsequent release of ODN from the carrier resulted in significant down-regulation of mRNA expression. Specifically, G3139, an antisense construct targeting the apoptotic antagonist gene bcl-2, was examined in the human melanoma cell line 518A2. Upon exposure to PFV-encapsulated G3139, cells displayed a time-dependent reduction in bcl-2 message levels. The bcl-2 mRNA level was reduced by 50% after 24 h treatment and by ~80% after 72 h when compared to cells treated with free G3139, empty PFV or PFV–G3622, a control ODN sequence. Our results establish that ODN can be released from PFV after intracellular uptake and can then migrate to the nucleus and selectively down-regulate target mRNA.  相似文献   

14.
Knock-out of the gene coding for caveolin-1, the main organizer of caveolae, has not yet been performed. We devised a strategy to knock-down caveolin-1 gene expression using antisense oligodeoxynucleotides (ODNs). Seven ODNs, covering different regions of caveolin-1 mRNA, were screened by Western blot analysis of caveolin-1 levels. The most active and specific was found to reduce caveolin-1 protein levels by 70% at 1 microM concentration and its action, as demonstrated by a marked reduction (about 50%) in caveolin-1 mRNA levels, was due to a true antisense mechanism. In HUVEC treated with the active ODN, caveolae were undetectable by confocal and electron microscopy, while their number was not affected when cells were treated with a scrambled ODN. Using the fibrin gel 3 D angiogenesis test we established that the active (but not the scrambled) ODN strongly suppressed capillary-like tube formation. Moreover, an antisense tailored against chicken caveolin-1 mRNA, when tested using the chorio-allantoic membrane technique, dramatically reduced vessel formation at doses (10-20 microg) under which control ODNs were ineffective and devoid of toxicity. Thus, it is likely that caveolin-1 down regulation, followed by caveolae disruption, impairs angiogenesis in vitro and in vivo.  相似文献   

15.
In previous studies, we showed that reducing Ets-like protein-1 (Elk-1) expression inhibited protein kinase C alpha (PKC alpha) expression and decreased cell migration and invasion in human hepatocellular carcinoma (HCC). In this study, we have investigated the role of Elk-1 in tumorigenesis. SK-Hep-1 HCC cells were transfected with the ElK-1 antisense oligonucleotide (ODN). In the pretreated cells we detected a reduction of mRNA level using RT-PCR. The inhibitory rate of cell growth was measured by MTT assay. Pretreated-SK-Hep-1 HCC cells were implanted subcutaneously into nude mice to observe the tumor growth and calculate tumor inhibitory rate. The results showed that 5 microM of the antisense ODN Elk-1 suppressed both Elk-1 and PKC alpha production by SK-Hep-1 HCC cells after cationic liposome-mediated transfection, to 8% and 1% of control values, respectively, and the growth of SK-Hep-1 HCC cells was inhibited at 2-5 microM doses of the antisense ODN Elk-1. The control reagent, sense ODN Elk-1, showed no effects. In BALB/nude mice, SK-Hep-1 HCC cells transfected with the 5 microM antisense ODN Elk-1 formed tumors much smaller than those of sense ODN Elk-1 pretreated cells. The maximum inhibitory rate of tumor growth was 80.8+/-12.6% and the tumor formation time was prolonged from 13 to 25 days. These findings suggested the usefulness of antisense ODN Elk-1 as a new reagent for liver cancer therapy.  相似文献   

16.
17.
ABSTRACT Exon sequences upstream of splice sites play a critical role in mRNA processing, which is dependent on spliceosome interactions with these sites. Using antisense oligodeoxynucleotides (ODN), we targeted these and other sequences of the proinflammatory tumor necrosis factor-alpha (TNF-alpha) gene because it is multiply spliced and has been difficult to regulate with ODN in the past. ODN targeting exon sequences upstream of the donor splice sites of internal exons 2 (ORF4) and 3 (ORF6) significantly reduced TNF-alpha levels in stimulated U937 cells by 62%+/-7% and 51%+/-9%, respectively, in a dose-dependent manner but did not affect interleukin-6 (IL-6) levels. In contrast, ODN targeting the exon sequences downstream of the acceptor splice sites of exons 1, 2, and 3 failed to reduce TNF-alpha levels significantly under the same conditions. End-phosphorothioated ORF4 (ORF4-PE) significantly reduced TNF-alpha mRNA levels by greater than 80% (p < 0.001) and protein levels by 60% (p < 0.001) in U937 cells. ORF4-PE reduced newly synthesized TNF-alpha protein levels by >80% in lipopolysaccharide (LPS)-stimulated human macrophages, by greater than 60% in phorbol myristate acetate/phyto-hemagglutinin (PMA/PHA)-stimulated human peripheral blood mononuclear cells (PBMC), and by approximately 50% in LPS-stimulated murine monocytes. These results suggest that exon sequences flanking donor splice sites are highly susceptible target domains for antisense inhibition of TNF-alpha gene expression.  相似文献   

18.
We have tested the effect of a range of antisense oligodeoxyribonucleotides (ODN) directed against the human estrogen receptor alpha (ERalpha) on ERalpha protein expression and function. Antisense ERalpha ODN transfected into the ERalpha-positive human breast carcinoma cell line MCF7-K2 showed variable responses dependent on the oligo used. The most active antisense ODN (oligo 7) decreased the levels of ERa protein by 61% as measured by Western blot analysis. Exogenous 17beta-estradiol (17beta-E2), but not 17alpha-E2, augmented this effect, with a threshold effect at 10(-8) M 17beta-E2. The inhibitory effect of antisense ERa oligo 7 was confirmed by measurement of functional ERalpha protein. 3H-17beta-E2 binding to MCF7 cell extracts was inhibited to approximately 40% of control values in the presence of oligo 7. Antisense-transfected MCF7-K2 cell cultures produced a further 30% binding reduction in the presence of exogenous 17beta-E2. An inhibitory effect on 17beta-E2-dependent cell function was confirmed by the demonstration that ERalpha oligo 7-transfected MCF7-K2 cells failed to exhibit 17beta-E2-stimulated cell proliferation. Exogenous 17beta-E2 enhanced the inhibitory effect of the antisense ODN by increasing ODN transfection efficiency but without ERalpha catabolism via the proteosomal pathway, suggesting an effect of 17beta-E2 on the plasma membrane and the existence of different ERalpha degradation pathways in the MCF7-K2 cell subclone. As 17beta-E2 had no effect on ERalpha protein degradation, we conclude that the observed reduction of ERalpha protein levels is due solely to the presence of the antisense ERalpha ODN. Antisense ERalpha ODN molecules, therefore, may form the basis of effective therapies against ERalpha-dependent malignancies.  相似文献   

19.
We have previously found that epidermal growth factor (EGF) mediates growth through the Jun N-terminal kinase/stress-activated kinase (JNK/SAPK) pathway in A549 human lung carcinoma cells. As observed here, EGF treatment also greatly enhances the tumorigenicity of A549 cells, suggesting an important role for JNK in cancer cell growth (F. Bost, R. McKay, N. Dean, and D. Mercola, J. Biol. Chem. 272:33422-33429, 1997). Several isoforms families of JNK, JNK1, JNK2, and JNK3, have been isolated; they arise from alternative splicing of three different genes and have distinct substrate binding properties. Here we have used specific phosphorothioate oligonucleotides targeted against the two major isoforms, JNK1 and JNK2, to discriminate their roles in EGF-induced transformation. Multiple antisense sequences have been screened, and two high-affinity and specific candidates have been identified. Antisense JNK1 eliminated steady-state mRNA and JNK1 protein expression with a 50% effective concentration (EC50) of <0.1 microM but did not alter JNK2 mRNA or protein levels. Conversely, antisense JNK2 specifically eliminated JNK2 steady-state mRNA and protein expression with an EC50 of 0.1 microM. Antisense JNK1 and antisense JNK2 inhibited by 40 and 70%, respectively, EGF-induced total JNK activity, whereas sense and scrambled-sequence control oligonucleotides had no effect. The elimination of mRNA, protein, and JNK activities lasted 48 and 72 h following a single Lipofectin treatment with antisense JNK1 and JNK2, respectively, indicating sufficient duration for examining the impact of specific elimination on the phenotype. Direct proliferation assays demonstrated that antisense JNK2 inhibited EGF-induced doubling of growth as well as the combination of active antisense oligonucleotides did. EGF treatment also induced colony formation in soft agar. This effect was completely inhibited by antisense JNK2 and combined-antisense treatment but not altered by antisense JNK1 alone. These results show that EGF doubles the proliferation (growth in soft agar as well as tumorigenicity in athymic mice) of A549 lung carcinoma cells and that the JNK2 isoform but not JNK1 is utilized for mediating the effects of EGF. This study represents the first demonstration of a cellular phenotype regulated by a JNK isoform family, JNK2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号