首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, a small number of cells that have stem cell properties were identified in human gliomas called brain tumor stem cells (BTSCs), which were thought to mainly contribute to the initiation and development of gliomas and could be identified by the surface marker CD133. However, recent studies indicated that the expression of CD133 might be regulated by environmental conditions such as hypoxia and that there might be CD133- BTSCs. Genetic mouse models demonstrated that some gliomas originated from transformed neural stem cells (NSCs). Therefore, we investigated the expression of CD15, a surface marker for NSCs, in tumor spheres derived from astrocytoma and ependymoma. CD15+ cells isolated from these tumor spheres had properties of BTSCs including self-renewal, multidifferentiation, and the ability to recapitulate the phenocopy of primary tumors. CD15 exhibited stable expression in long-term cultured tumor spheres, which sustained BTSCs properties, whereas CD133 expression decreased significantly in late passages. Furthermore, CD15+CD133- cells isolated from early or late passages of tumor spheres showed similar characteristics of BTSCs. Examination of glioma samples by immunohistochemistry showed that CD15 was expressed in a subset of human brain tumors. Therefore, CD15 can be used as a marker of stem-like cells derived from brain tumors that might contain CD133- BTSCs.  相似文献   

2.
Hypoxia plays a critical role in the tumor microenvironment of high-grade gliomas by promoting the glioma stem cell (GSC)-like phenotype, which displays resistance to standard therapies. We tested three glioblastoma multiforme xenograft lines (xenolines) against γ(1)34.5-deleted recombinant oncolytic herpes simplex virus (oHSV) C101 under 1% (hypoxia) and 20.8% (normoxia) oxygen tension for effects on oHSV infectivity, replication, and cytotoxicity in all tumor cells and CD133(+) GSCs. Expression levels of CD133, a putative GSC marker, and CD111 (nectin-1), an adhesion molecule that is the most efficient method for HSV entry, increased significantly under hypoxia in all three xenolines. Despite increased CD111 expression under hypoxic conditions, oHSV infectivity, cytotoxicity and viral recovery were not improved or were diminished in all three xenolines under hypoxia. In contrast, wild-type HSV-1 equally infected xenoline cells in normoxia and hypoxia, suggesting that the 34.5 mutation plays a role in the decreased C101 infectivity in hypoxia. Importantly, CD133(+) cells were not more resistant to oHSV than CD133(-) tumor cells regardless of oxygen tension. Furthermore, CD133 expression decreased as viral dose increased in two of the xenolines suggesting that up-regulation of CD133 in hypoxia was not the cause of reduced viral efficacy. Our findings that oHSV infectivity and cytotoxicity were diminished under hypoxia in several GBM xenolines likely have important implications for clinical applications of oHSV therapies, especially considering the vital role of hypoxia in the microenvironment of GBM tumors.  相似文献   

3.
目的:在体外胶质瘤U87细胞中稳定表达肿瘤干细胞标记分子CD133。方法:通过脂质体介导将表达载体质粒CD133-1/pCR3.1-Uni转染U87细胞,G418筛选稳定表达抗性的细胞株;用细胞免疫荧光染色鉴定表达CD133分子的U87细胞。结果:转染CD133表达载体的U87细胞可以被CD133单抗识别,而转染空载体的U87细胞免疫染色结果为阴性,表明CD133分子在U87细胞中稳定表达。结论:U87细胞稳定表达CD133分子,为体内外分析CD133阳性U87细胞特性奠定了基础:U87CD133阳性细胞可以作为免疫组化或流式细胞术等检测其他肿瘤干细胞CD133表达的阳性对照细胞。  相似文献   

4.
The CD133 glycoprotein is a controversial cancer stem cell marker in the field of neuro‐oncology, based largely on the now considerable experimental evidence for the existence of both CD133+ve and CD133?ve populations as tumour‐initiating cells. It is thought that decreasing oxygen tension enhances the complex regulation and phenotype of CD133 in glioma. In light of these ideologies, establishing the precise functional role of CD133 is becoming increasingly critical. In this article, we review the complex regulation of CD133 and its extracellular epitope AC133, and associated alterations, to tumour cell behaviour by hypoxia. Furthermore, its role in functional modulation of tumours, rather than determination of a specific stem cell type is therefore alluded to, while evidence for and against its ability as a cancer stem cell marker in primary brain tumours, is critically evaluated. Thus, the suggestion that CD133 may be a central ‘holy grail’ in identifying core cells for propagation of malignant glial neoplasms seems increasingly less convincing. It remains to be seen, however, whether CD133 is randomly expressed on such brain tumour cell populations or whether it is of major significance to brain biological behaviour.  相似文献   

5.
Few studies on the biologic and molecular properties of pediatric glioblastoma have been performed. Until now, differential genomic analysis of CD133(+)ve and CD133(-)ve fractions has not been described in pediatric glioma. We hypothesize not only that the presence of CD133 could be the source of tumor resistance but also that maintenance of this molecule by hypoxia dictates cellular and molecular behavior. From a series of human glioblastoma biopsies investigated, only one, IN699 (from a pediatric glioblastoma), generated greater than 4% of the total cell volume as CD133(+)ve cells. Using this pediatric glioblastoma, containing unprecedented high levels of the putative brain tumor stem cell marker CD133, as a study model, we report biologic and molecular characteristics of the parent culture and of CD133(+)ve and CD133(-)ve populations derived therefrom under atmospheric and hypoxic culture conditions. Immunocytochemistry and flow cytometry were performed with antigenic markers known to characterize neural stem cells and associated glioma behavior. Behavioral analysis was carried out using proliferation, adhesion, migration, and invasion assays. Cell cycle analysis and array comparative genomic hybridization were used to assess copy number profiles for parental cells and CD133(+)ve and CD133(-)ve fractions, respectively. With regard to invasion and proliferation, CD133(+)ve and CD133(-)ve fractions were inversely proportional, with a significant increase in invasive propensity within the CD133(-)ve cells (P < .005) and a significant increase in proliferation within CD133(+)ve cells (P < .005). Our observations indicate identical genomic imbalances between CD133(+)ve and CD133(-)ve fractions. Furthermore, our research documents a direct link between decreasing oxygen tension and CD133 expression.  相似文献   

6.

Background

While neurosphere- as well as xenograft tumor-initiating cells have been identified in gliomas, the resemblance between glioma cells and neural stem/progenitor cells as well as the prognostic value of stem/progenitor cell marker expression in glioma are poorly clarified.

Methodology/Principal Findings

Viable glioma cells were characterized for surface marker expression along the glial genesis hierarchy. Six low-grade and 17 high-grade glioma specimens were flow-cytometrically analyzed for markers characteristics of stem cells (CD133); glial progenitors (PDGFRα, A2B5, O4, and CD44); and late oligodendrocyte progenitors (O1). In parallel, the expression of glial fibrillary acidic protein (GFAP), synaptophysin and neuron-specific enolase (NSE) was immunohistochemically analyzed in fixed tissue specimens. Irrespective of the grade and morphological diagnosis of gliomas, glioma cells concomitantly expressed PDGFRα, A2B5, O4, CD44 and GFAP. In contrast, O1 was weakly expressed in all low-grade and the majority of high-grade glioma specimens analyzed. Co-expression of neuronal markers was observed in all high-grade, but not low-grade, glioma specimens analyzed. The rare CD133 expressing cells in low-grade glioma specimens typically co-expressed vessel endothelial marker CD31. In contrast, distinct CD133 expression profiles in up to 90% of CD45-negative glioma cells were observed in 12 of the 17 high-grade glioma specimens and the majority of these CD133 expressing cells were CD31 negative. The CD133 expression correlates inversely with length of patient survival. Surprisingly, cytogenetic analysis showed that gliomas contained normal and abnormal cell karyotypes with hitherto indistinguishable phenotype.

Conclusions/Significance

This study constitutes an important step towards clarification of lineage commitment and differentiation blockage of glioma cells. Our data suggest that glioma cells may resemble expansion of glial lineage progenitor cells with compromised differentiation capacity downstream of A2B5 and O4 expression. The concurrent expression of neuronal markers demonstrates that high-grade glioma cells are endowed with multi-lineage differentiation potential in vivo. Importantly, enhanced CD133 expression marks a poor prognosis in gliomas.  相似文献   

7.
8.
Although CD90 has been identified as a marker for various kinds of stem cells including liver cancer stem cells (CSCs) that are responsible for tumorigenesis, the potential role of CD90 as a marker for CSCs in gliomas has not been characterized. To address the issue, we investigated the expression of CD90 in tissue microarrays containing 15 glioblastoma multiformes (GBMs), 19 WHO grade III astrocytomas, 13 WHO grade II astrocytomas, 3 WHO grade I astrocytomas and 8 normal brain tissues. Immunohistochemical analysis showed that CD90 was expressed at a medium to high level in all tested high-grade gliomas (grade III and GBM) whereas it was barely detectable in low-grade gliomas (grade I and grade II) and normal brains. Double immunofluorescence staining for CD90 and CD133 in GBM tissues revealed that CD133(+) CSCs are a subpopulation of CD90(+) cells in GBMs in vivo. Flow cytometry analysis of the expression of CD90 and CD133 in GBM-derived stem-like neurospheres further confirmed the conclusion in vitro. The expression levels of both CD90 and CD133 were reduced along with the loss of stem cells after differentiation. Furthermore, the limiting dilution assay demonstrated that the sphere formation ability was comparable between the CD90(+)/CD133(+) and the CD90(+)/CD133(-) populations of GBM neurospheres, which is much higher than that of the CD90(-)/CD133(-) population. We also performed double staining for CD90 and a vascular endothelial cell marker CD31 in tissue microarrays which revealed that the CD90(+) cells were clustered around the tumor vasculatures in high-grade glioma tissues. These findings suggest that CD90 is not only a potential prognostic marker for high-grade gliomas but also a marker for CSCs within gliomas, and it resides within endothelial niche and may also play a critical role in the generation of tumor vasculatures via differentiation into endothelial cells.  相似文献   

9.
10.
Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133− cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133− cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133− cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.  相似文献   

11.

Background

CD133 (Prominin) is widely used as a marker for the identification and isolation of neural precursor cells from normal brain or tumor tissue. However, the assumption that CD133 is expressed constitutively in neural precursor cells has not been examined.

Methodology/Principal Findings

In this study, we demonstrate that CD133 and a second marker CD15 are expressed heterogeneously in uniformly undifferentiated human neural stem (NS) cell cultures. After fractionation by flow cytometry, clonogenic tripotent cells are found in populations negative or positive for either marker. We further show that CD133 is down-regulated at the mRNA level in cells lacking CD133 immunoreactivity. Cell cycle profiling reveals that CD133 negative cells largely reside in G1/G0, while CD133 positive cells are predominantly in S, G2, or M phase. A similar pattern is apparent in mouse NS cell lines. Compared to mouse NS cells, however, human NS cell cultures harbour an increased proportion of CD133 negative cells and display a longer doubling time. This may in part reflect a sub-population of slow- or non-cycling cells amongst human NS cells because we find that around 5% of cells do not take up BrdU over a 14-day labelling period. Non-proliferating NS cells remain undifferentiated and at least some of them are capable of re-entry into the cell cycle and subsequent continuous expansion.

Conclusions

The finding that a significant fraction of clonogenic neural stem cells lack the established markers CD133 and CD15, and that some of these cells may be dormant or slow-cycling, has implications for approaches to identify and isolate neural stem cells and brain cancer stem cells. Our data also suggest the possibility that CD133 may be specifically down-regulated during G0/G1, and this should be considered when this marker is used to identify and isolate other tissue and cancer stem cells.  相似文献   

12.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

13.
miR-124 is a brain-enriched microRNA that plays a crucial role in neural development and has been shown to be down-regulated in glioma and medulloblastoma, suggesting its possible involvement in brain tumor progression. Here, we show that miR-124 is down-regulated in a panel of different grades of glioma tissues and in all of the human glioma cell lines we examined. By integrated bioinformatics analysis and experimental confirmation, we identified SNAI2, which is often up-regulated in glioma, as a direct functional target of miR-124. Because SNAI2 has been shown to regulate stem cell functions, we examined the roles of miR-124 and SNAI2 in glioma cell stem-like traits. The results showed that overexpression of miR-124 and knockdown of SNAI2 reduced neurosphere formation, CD133(+) cell subpopulation, and stem cell marker (BMI1, Nanog, and Nestin) expression, and these effects could be rescued by re-expression of SNAI2. Furthermore, enhanced miR-124 expression significantly inhibited glioma cell invasion in vitro. Finally, stable overexpression of miR-124 and knockdown of SNAI2 inhibited the tumorigenicity and invasion of glioma cells in vivo. These findings reveal, for the first time, that the tumor suppressor activity of miR-124 could be partly due to its inhibitory effects on glioma stem-like traits and invasiveness through SNAI2.  相似文献   

14.
Qiu B  Zhang D  Wang C  Tao J  Tie X  Qiao Y  Xu K  Wang Y  Wu A 《Molecular biology reports》2011,38(5):3585-3591
Immune-associated cytokines including IL-10 and TGF-β2 are thought to play a crucial role in immunosuppression mediated by gliomas. We have investigated the possibility that glioma stem cells are the major source of these cytokines. Tumor spheres, clonal non-adherent cell colonies derived from a single tumor stem cell, were cultured from surgical specimens of eight glioma patients, including two glioblastoma multiformes (grade IV), one anaplastic oligodendroglioma (grade III) and five anaplastic astrocytomas (grade III). Real-time RT-PCR and immunoassay were used to compare the relative expression levels of IL-10 and TGF-β2 in stem-cell-derived tumor sphere cells (TSCs) and primary cultured glioma cells (PCGCs). TSCs were confirmed to express the brain tumor stem cell marker CD133, and on in vitro differentiation gave rise to cells expressing neuronal or glial markers. RT-PCR and immunoassay revealed that mRNA and protein levels of both IL-10 and TGF-β2 were significantly higher in TSCs than in PCGCs from the same tumor. Interestingly, the degree of overexpression in TSCs, but not in PCGS, appeared to correlate with the pathological grade of the glioma. These findings suggest that glioma stem cells are likely to be the major tumor source of immunosuppressive cytokines and thereby play a crucial role in determining glioma malignancy.  相似文献   

15.
Zhang QB  Ji XY  Huang Q  Dong J  Zhu YD  Lan Q 《Cell research》2006,16(12):909-915
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.  相似文献   

16.

Background

Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells.

Methodology/Principal Findings

Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G0/G1 phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice.

Conclusions/Significance

These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.  相似文献   

17.
胶质瘤作为一种恶性脑肿瘤,具有预后差、易复发、对放化疗有抵抗性等特点。为了提高对胶质瘤的分级及预后评价的准确性,获得有效的、有针对性的胶质瘤干细胞(glioma stem cell,GSC)标记物具有十分重要的意义。本文主要对CD133、SSEA-1、Nestin等干细胞标记物在胶质瘤临床诊治中的应用特征与相互联系进行了综述。CD133作为一种最早发现的胶质瘤干细胞标志物应用广泛,但其分布无特异性、表达不稳定限制了其预后评价的精确性,其有效性目前仍存在争议。SSEA-1(CD15)与Nestin等分子弥补了CD133的部分不足。这三种标记物的联合应用为胶质瘤的临床诊断和治疗提供了重要的参考依据。后续研究陆续发现的A2B5、BMI1、LGR5等标记物有助于进一步了解GSC的性质,提高胶质瘤的诊治水平和预后评价的准确度。  相似文献   

18.
A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.  相似文献   

19.
Cancer stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Cancer stem cells are thus likely to be responsible for maintaining or spreading a cancer, and may be the most relevant targets for cancer therapy. The CD133 glycoprotein was recently described as a reliable cancer stem-like cell marker in colon carcinoma. CD133+ cells are both necessary and sufficient to initiate tumour growth in animal models. The CD133+ cell population and spheroid cultures contain cells expressing the stem cell marker Musashi-1 which is involved in maintenance of stem cell fate in several tissues and importantly, this expression is maintained in stem-like cells derived from xenografted tumours. Here we discuss the potential use of the CD133 antigen in concert with Musashi-1 as markers to identify the colon cancer stem cell population. Since the up-regulation of IL-4 cytokine was recently demonstrated to constitute an important mechanism that protects the tumorigenic CD133+ cells from apoptosis, the potential benefits of standard chemotherapeutic treatments in combination with IL-4 inhibitors in the context of human colon carcinoma, are also discussed.  相似文献   

20.
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号