首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In normal mice, a subpopulation of CD4 T cells constitutively express CD25. These cells behave as regulatory T cells in autoimmune and inflammatory reactions, in tolerance to superantigens, and in peripheral T-cell homeostasis. They are unable to produce interleukin (IL)-2, and are dependent on IL-2 for growth in vitro and in vivo. CD4 CD25(+) T cells spontaneously secrete IL-10, which is involved in some of their regulatory functions. They are resistant to apoptosis, but can be tolerized by anergy.  相似文献   

2.
Previously we reported that TGF-beta has an important role in the generation and expansion of human "professional" CD4(+)CD25(+) regulatory T cells in the periphery that have a cytokine-independent mechanism of action. In this study we used low-dose staphylococcal enterotoxin to induce T cell-dependent Ab production. We report that TGF-beta induces activated CD4(+)CD25(-) T cells to become Th3 suppressor cells. While stimulating CD4(+) cells with TGF-beta modestly increased expression of CD25 and intracellular CTLA-4 in primary cultures, upon secondary stimulation without TGF-beta the total number and those expressing these markers dramatically increased. This expansion was due to both increased proliferation and protection of these cells from activation-induced apoptosis. Moreover, adding as few as 1% of these TGF-beta-primed CD4(+) T cells to fresh CD4(+) cells and B cells markedly suppressed IgG production. The inhibitory effect was mediated by TGF-beta and was also partially contact dependent. Increased TGF-beta production was associated with a decreased production of IFN-gamma and IL-10. Depletion studies revealed that the precursors of these TGF-beta-producing CD4(+) suppressor cells were CD25 negative. These studies provide evidence that CD4(+)CD25(+) regulatory cells in human blood consist of at least two subsets that have TGF-beta-dependent and independent mechanisms of action. TGF-beta has an essential role in the generation of both of these T suppressor cell subsets from peripheral T cells. The ability to induce CD4(+) and CD8(+) cells to become regulatory cells ex vivo has the potential to be useful in the treatment of autoimmune diseases and to prevent transplant rejection.  相似文献   

3.
Self cells depend on surface complement regulators to protect them from autologous complement mediated attack. CD4+CD25+foxp3+ T regulatory (Treg) cells are critical in maintaining immune homeostasis, however, which complement regulators are expressed on them and how they are protected from autologous complement attack remains unknown. We report here that mouse Treg cells express virtually no DAF or CR1. Instead, all of them express Crry and approximately half of them express CD59. Both Crry−/− and CD59−/− Treg cells exhibit greater complement mediated injury than WT Treg cells. These results clarify the status of cell surface complement regulators on mouse Treg cells and indicate that both Crry and CD59 are required to protect Treg cells from autologous complement mediated injury. Additionally, these data also argue that different from previous assumption, at least in mice, CD4+CD25+foxp3+ Treg cells are not homogenous and could be further divided into subgroups based on CD59 expression.  相似文献   

4.
Infection with malaria parasites frequently induces total immune suppression, which makes it difficult for the host to maintain long-lasting immunity. Here we show that depletion of CD4(+)CD25(+) regulatory T cells (T(reg)) protects mice from death when infected with a lethal strain of Plasmodium yoelii, and that this protection is associated with an increased T-cell responsiveness against parasite-derived antigens. These results suggest that activation of T(reg) cells contributes to immune suppression during malaria infection, and helps malaria parasites to escape from host immune responses.  相似文献   

5.
6.
We characterized CD8(+) T cells constitutively expressing CD25 in mice lacking the expression of MHC class II molecules. We showed that these cells are present not only in the periphery but also in the thymus. Like CD4(+)CD25(+) T cells, CD8(+)CD25(+) T cells appear late in the periphery during ontogeny. Peripheral CD8(+)CD25(+) T cells from MHC class II-deficient mice also share phenotypic and functional features with regulatory CD4(+)CD25(+) T cells: in particular, they strongly express glucocorticoid-induced TNFR family-related gene, CTLA-4 and Foxp3, produce IL-10, and inhibit CD25(-) T cell responses to anti-CD3 stimulation through cell contacts with similar efficiency to CD4(+)CD25(+) T cells. However, unlike CD4(+)CD25(+) T cells CD8(+)CD25(+) T cells from MHC class II-deficient mice strongly proliferate and produce IFN-gamma in vitro in response to stimulation in the absence of exogenous IL-2.  相似文献   

7.
CD4+CD25+Foxp3+ regulatory T cells (T(reg)) are critical for controlling autoimmunity. Evidence suggests that T(reg) development, peripheral maintenance, and suppressive function are dependent on Ag specificity. However, there is little direct evidence that the T(reg) responsible for controlling autoimmunity in NOD mice or other natural settings are Ag specific. In fact, some investigators have argued that polyclonal Ag-nonspecific T(reg) are efficient regulators of immunity. Thus, the goal of this study was to identify, expand, and characterize islet Ag-specific T(reg) in NOD mice. Ag-specific T(reg) from NOD mice were efficiently expanded in vitro using IL-2 and beads coated with recombinant islet peptide mimic-MHC class II and anti-CD28 mAb. The expanded Ag-specific T(reg) expressed prototypic surface markers and cytokines. Although activated in an Ag-specific fashion, the expanded T(reg) were capable of bystander suppression both in vitro and in vivo. Importantly, the islet peptide mimic-specific T(reg) were more efficient than polyclonal T(reg) in suppressing autoimmune diabetes. These results provide a direct demonstration of the presence of autoantigen-specific T(reg) in the natural setting that can be applied as therapeutics for organ-specific autoimmunity.  相似文献   

8.
Experimental autoimmune encephalomyelitis (EAE) is one of the best-documented animal models of autoimmune disease. We examined the role of CD8+CD122+ regulatory T cells, which we previously identified as naturally occurring regulatory T cells that effectively regulate CD8+ T cells, in EAE. Depletion of CD8+CD122+ regulatory T cells by in vivo administration of anti-CD122 mAb resulted in persistent EAE symptoms. Transfer of CD8+CD122+ regulatory T cells into EAE mice at the peak EAE score clearly improved symptoms, indicating an important role of CD8+CD122+ regulatory T cells in the recovery phase of EAE. This was further confirmed by an increase and a decrease in the number of infiltrating T cells in the CNS and T cell cytokine production in mice that were depleted of or complemented with CD8+CD122+ cells. Furthermore, transfer of preactivated CD8+CD122+ regulatory T cells resulted in diminished EAE symptoms, especially in the recovery phase of EAE. These results elucidate the essential role of CD8+CD122+ regulatory T cells in the recovery phase of EAE and suggest the preventive effect of preactivated CD8+CD122+ regulatory T cells for EAE.  相似文献   

9.
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-beta are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25(hi) (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25-, Foxp3-, and CD127- and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3- regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Ralpha, that modulates the inflammatory response to malaria.  相似文献   

10.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

11.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

12.
13.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

14.

Background

Detection of a retrovirus, xenotropic murine leukaemia virus-related virus (XMRV), has recently been reported in 67% of patients with chronic fatigue syndrome. We have studied a total of 170 samples from chronic fatigue syndrome patients from two UK cohorts and 395 controls for evidence of XMRV infection by looking either for the presence of viral nucleic acids using quantitative PCR (limit of detection <16 viral copies) or for the presence of serological responses using a virus neutralisation assay.

Results

We have not identified XMRV DNA in any samples by PCR (0/299). Some serum samples showed XMRV neutralising activity (26/565) but only one of these positive sera came from a CFS patient. Most of the positive sera were also able to neutralise MLV particles pseudotyped with envelope proteins from other viruses, including vesicular stomatitis virus, indicating significant cross-reactivity in serological responses. Four positive samples were specific for XMRV.

Conclusions

No association between XMRV infection and CFS was observed in the samples tested, either by PCR or serological methodologies. The non-specific neutralisation observed in multiple serum samples suggests that it is unlikely that these responses were elicited by XMRV and highlights the danger of over-estimating XMRV frequency based on serological assays. In spite of this, we believe that the detection of neutralising activity that did not inhibit VSV-G pseudotyped MLV in at least four human serum samples indicates that XMRV infection may occur in the general population, although with currently uncertain outcomes.  相似文献   

15.
We have used TCR transgenic mice directed to different MHC class II-restricted determinants from the influenza virus hemagglutinin (HA) to analyze how specificity for self-peptides can shape CD4+CD25+ regulatory T (Treg) cell formation. We show that substantial increases in the number of CD4+CD25+ Treg cells can occur when an autoreactive TCR directed to a major I-E(d)-restricted determinant from HA develops in mice expressing HA as a self-Ag, and that the efficiency of this process is largely unaffected by the ability to coexpress additional TCR alpha-chains. This increased formation of CD4+CD25+ Treg cells in the presence of the self-peptide argues against models that postulate selective survival rather than induced formation as mechanisms of CD4+CD25+ Treg cell formation. In contrast, T cells bearing a TCR directed to a major I-A(d)-restricted determinant from HA underwent little or no selection to become CD4+CD25+ Treg cells in mice expressing HA as a self-Ag, correlating with inefficient processing and presentation of the peptide from the neo-self-HA polypeptide. These findings show that interactions with a self-peptide can induce thymocytes to differentiate along a pathway to become CD4+CD25+ Treg cells, and that peptide editing by DM molecules may help bias the CD4+CD25+ Treg cell repertoire away from self-peptides that associate weakly with MHC class II molecules.  相似文献   

16.
Regulatory T cell (Treg) is a subset of CD4+ T lymphocytes expressing CD25 with immunosuppressive activity. However the function of Tregs onto osteoclastogenesis remains unknown. We investigated the effect and regulatory mechanism of Treg focusing on osteoclastogenesis from PBMCs. Tregs were isolated from PBMCs by magnetic cell sorting-column and analyzed by flow cytometry. RT-PCR was performed to identify Foxp3 mRNA. Using PBMCs and Tregs coculture system, we could find that Tregs inhibited osteoclasts differentiation from PBMCs and reduced the resorbed areas on pit assay (p <0.01). This suppression of osteoclast differentiation was cytokine-dependent, not cell-to-cell direct contact proved by Transwell system. Tregs-induced osteoclast differentiation was blocked by anti-TGF-beta or anti-IL-4 antibody treatment. These results suggest that Tregs inhibit osteoclast differentiation from PBMCs in a cytokine-dependent manner, not by cell-to-cell contact manner and that TGF-beta and IL-4 may be the key cytokines for this suppressive function of Tregs.  相似文献   

17.
The B6.Sle1.Sle2.Sle3 triple congenic mouse (B6.TC) is a model of lupus coexpressing the three major NZM2410-derived susceptibility loci on a C57BL/6 background. B6.TC mice produce high titers of antinuclear nephrogenic autoantibodies and a highly penetrant glomerulonephritis. Previous studies have shown the Sle1 locus is associated with a reduced number of regulatory T cells (Treg) and that Sle3 results in intrinsic defects of myeloid cells that hyperactivate T cells. In this report, we show that B6.TC dendritic cells (DCs) accumulate in lymphoid organs and present a defective maturation process, in which bone marrow-derived, plasmacytoid, and myeloid DCs express a significantly lower level of CD80, CD86, and MHC class II. B6.TC DCs also induce a higher level of proliferation in CD4(+) T cells than B6 DCs, and B6.TC DCs block the suppressive activity of Treg. B6.TC DCs overproduce IL-6, which is necessary for the blockade of Treg activity, as shown by the effect of anti-IL-6 neutralizing Ab in the suppression assays. The overproduction of IL-6 by DCs and the blockade of Treg activity maps to Sle1, which therefore not only confers a reduced number of Treg but also blocks their ability to regulate autoreactive T cells. Taken together, these results provide a genetic and mechanistic evidence for systemic autoimmunity resulting from an impaired regulatory T cell compartment in both number and function and for Sle1-expressing DCs playing a major role in the latter defect though their production of IL-6.  相似文献   

18.
The alphaEbeta7 integrin CD103 may direct lymphocytes to its ligand E-cadherin. CD103 is expressed on T cells in lung and gut and on allograft-infiltrating T cells. Moreover, recent studies have documented expression of CD103 on CD4+ regulatory T cells. Approximately 4% of circulating CD8+ T cells bear the CD103 molecule. In this study, we show that the absence or presence of CD103 was a stable trait when purified CD103- and CD103+ CD8+ T cell subsets were stimulated with a combination of CD3 and CD28 mAbs. In contrast, allostimulation induced CD103 expression on approximately 25% of purified CD103- CD8+ T cells. Expression of CD103 on alloreactive cells was found to be augmented by IL-4, IL-10, or TGF-beta and decreased by addition of IL-12 to MLCs. The alloantigen-induced CD103+ CD8+ T cell population appeared to be polyclonal and retained CD103 expression after restimulation. Markedly, in vitro-expanded CD103+ CD8+ T cells had low proliferative and cytotoxic capacity, yet produced considerable amounts of IL-10. Strikingly, they potently suppressed T cell proliferation in MLC via a cell-cell contact-dependent mechanism. Thus, human alloantigen-induced CD103+ CD8+ T cells possess functional features of regulatory T cells.  相似文献   

19.
20.
The capacity of naturally occurring autoreactive CD25+CD4+ regulatory T cells (Treg) to control immune responses both in vivo and in vitro is now well established. It has been demonstrated that these cells undergo positive selection within the thymus and appear to enter the periphery as committed CD25+CD4+ Treg. We have shown previously that CD25+CD4+ Treg with the capacity to prevent skin allograft rejection can be generated by pretreatment with donor alloantigen under the cover of anti-CD4 therapy. Here we demonstrate that this process does not require an intact thymus. Furthermore, generation of these Treg is not dependent on the expansion of CD25+CD4+ thymic emigrants, because depletion of CD25+ cells before pretreatment does not prevent Treg development, and Treg can be generated from CD25-CD4+ precursors. Taken together, these results clearly demonstrate that CD25+CD4+ Treg can be generated in the periphery from CD25-CD4+ precursors in a pathway distinct to that by which naturally occurring autoreactive CD25+CD4+ Treg develop. These observations may have important implications for the design of protocols, both experimental and clinical, for the induction of tolerance to autoantigens or alloantigens in adults with limited thymic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号