共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein disulfide isomerase (PDI) enzymes are eukaryotic oxidoreductases that catalyze oxidation, reduction and isomerization of disulfide bonds in polypeptide substrates. Here, we report the biochemical characterization of a PDI enzyme from the protozoan parasite Entamoeba histolytica (EhPDI). Our results show that EhPDI behaves mainly as an oxidase/isomerase and can be inhibited by bacitracin, a known PDI inhibitor; moreover, it exhibits chaperone-like activity. Albeit its physiological role in the life style of the parasite (including virulence and survival) remains to be studied, EhPDI could represent a potential drug target for anti-amebic therapy. 相似文献
2.
We have previously reported the isolation of a 52,000 M(r) protein (Pf52) displaying consensus sequences for thiol:disulfide oxidoreductases. Pf52 therefore represents the plasmodial protein disulfide isomerase (PDI). It has been renamed PfPDI and correlates to MAL8P1.17 in the annotated genome of P. falciparum (3D7 strain). Antibodies were raised against recombinant (His)(6)-tagged forms of PfPDI devoid of its signal peptide sequence, demonstrating a major co-localization of PfPDI with endoplasmic reticulum-resident proteins, PfBIP and PfERC, but not with the Golgi marker PfERD2. Recombinant PfPDI displayed typical biochemical functions of PDIs: oxidase/isomerase and reductase activities, as well as a chaperone-like behavior on the denaturated protein rhodanese. These activities were comparable to those measured for the purified native bovine PDI and the human recombinant PDI. The antiplasmodial compound DS61 does inhibit the recombinant PfPDI oxidase/isomerase activity but not that of the human recombinant PDI, suggesting structural differences between both enzymes. However, a discrepancy between the inhibitory activity of DS61 on the recombinant PfPDI (IC(50) of 430 microM) and its in vitro antiplasmodial activity (IC(50) of 0.1 microM) was observed, suggesting that PfPDI is not the only target of DS61. Taking into account its biochemical properties and its intracellular localization, the involvement of PfPDI in the parasite protein folding is discussed, as well as its potential for the development of alternative antimalarial chemotherapy strategies. 相似文献
3.
We have isolated a complementary deoxyribonucleic acid clone that encodes the protein disulfide isomerase of Bombyx mori (bPDI). This protein has a putative open reading frame of 494 amino acids and a predicted size of 55.6 kDa. In addition, 2 thioredoxin active sites, each with a CGHC sequence, and an endoplasmic reticulum (ER) retention signal site with a KDEL motif were found at the C-terminal. Both sites are typically found in members of the PDI family of proteins. The expression of bPDI messenger ribonucleic acid (mRNA) was markedly increased during ER stress induced by stimulation with calcium ionophore A23187, tunicamycin, and dithiothreitol, all of which are known to cause an accumulation of unfolded proteins in the ER. We also examined the tissue distribution of bPDI mRNA and found pronounced expression in the fat body of insects. Hormonal regulation studies showed that juvenile hormone, insulin, and a combination of juvenile hormone and transferrin (although not transferrin alone) affected bPDI mRNA expression. A challenge with exogenous bacteria also affected expression, and the effect peaked 16 hours after infection. These results suggest that bPDI is a member of the ER-stress protein group, that it may play an important role in exogenous bacterial infection of the fat body, and that its expression is hormone regulated. 相似文献
4.
Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis 下载免费PDF全文
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges. 相似文献
5.
Wadahama H Kamauchi S Nakamoto Y Nishizawa K Ishimoto M Kawada T Urade R 《The FEBS journal》2008,275(3):399-410
The protein disulfide isomerase is known to play important roles in the folding of nascent polypeptides and in the formation of disulfide bonds in the endoplasmic reticulum (ER). In this study, we cloned a gene of a novel protein disulfide isomerase family from soybean leaf (Glycine max L. Merrill. cv Jack) mRNA. The cDNA encodes a protein called GmPDIM. It is composed of 438 amino acids, and its sequence and domain structure are similar to that of animal P5. Recombinant GmPDIM expressed in Escherichia coli displayed an oxidative refolding activity on denatured RNase A. The genomic sequence of GmPDIM was also cloned and sequenced. Comparison of the soybean sequence with sequences from Arabidopsis thaliana and Oryza sativa showed significant conservation of the exon/intron structure. Consensus sequences within the promoters of the GmPDIM genes contained a cis-acting regulatory element for the unfolded protein response, and other regulatory motifs required for seed-specific expression. We observed that expression of GmPDIM was upregulated under ER-stress conditions, and was expressed ubiquitously in soybean tissues such as the cotyledon. It localized to the lumen of the ER. Data from co-immunoprecipitation experiments suggested that GmPDIM associated non-covalently with proglycinin, a precursor of the seed-storage protein glycinin. In addition, GmPDIM associated with the alpha' subunit of beta-conglycinin, a seed-storage protein in the presence of tunicamycin. These results suggest that GmPDIM may play a role in the folding of storage proteins and functions not only as a thiol-oxidoredactase, but also as molecular chaperone. 相似文献
6.
Urade R Yasunishi A Okudo H Moriyama T Kito M 《Bioscience, biotechnology, and biochemistry》1999,63(3):610-613
Protein disulfide isomerase (PDI) and its degradation products were found in HepG2, COS-1, and CHO-K1 cells. Whether or not the products were formed through autodegradation of PDI was examined, since PDI contains the CGHC motif, which is the active center of proteolytic activity in ER-60 protease. Commercial bovine PDI was autodegraded to produce a trimmed PDI. In addition, human recombinant PDI also had autodegradation activity. Mutant recombinant PDIs with CGHC motifs of which cysteine residues were replaced with serine or alanine residues were prepared. However, they were not autodegraded, suggesting the cysteine residues of motifs are necessary for autodegradation. 相似文献
7.
The isolation and purification to electrophoretical homogeneity and characterization of a protein disulfide isomerase from rat liver mitochondria is reported. The purified enzyme exhibits a single band on sodium dodecylsulfatepolyacrylamide gel electrophoresis with an apparent molecular weight of approximately 54 kDa. Comparatively, the microsomal form shows an apparent molecular weight of 57 kDa indicating that the two forms are slightly different. The antibody raised against the microsomal isoform does not recognize the mitochondrial enzyme. To characterize the enzyme, different classical methodologies utilized for protein disulfide isomerase estimation have been adopted. The isolated enzyme is active with all of them, indicating that it comprises all the features of a typical protein disulfide isomerase. At the mitochondrial level the enzyme appears mostly localized at the membrane level. Its potential involvement in mitochondrial membrane permeability control is also discussed. 相似文献
8.
The tripartite motif (TRIM) protein, TRIM5α, is an endogenous factor in primates that recognizes the capsids of certain retroviruses after virus entry into the host cell. TRIM5α promotes premature uncoating of the capsid, thus blocking virus infection. Low levels of expression and tendencies to aggregate have hindered the biochemical, biophysical, and structural characterization of TRIM proteins. Here, a chimeric TRIM5α protein (TRIM5Rh-21R) with a RING domain derived from TRIM21 was expressed in baculovirus-infected insect cells and purified. Although a fraction of the TRIM5Rh-21R protein formed large aggregates, soluble fractions of the protein formed oligomers (mainly dimers), exhibited a protease-resistant core, and contained a high percentage of helical secondary structure. Cross-linking followed by negative staining and electron microscopy suggested a globular structure. The purified TRIM5Rh-21R protein displayed E3-ligase activity in vitro and also self-ubiquitylated in the presence of ubiquitin-activating and -conjugating enzymes. The purified TRIM5Rh-21R protein specifically associated with human immunodeficiency virus type 1 capsid-like complexes; a deletion within the V1 variable region of the B30.2(SPRY) domain decreased capsid binding. Thus, the TRIM5Rh-21R restriction factor can directly recognize retroviral capsid-like complexes in the absence of other mammalian proteins. 相似文献
9.
The oxidative folding of disulfide-rich conotoxins is essential for their biological functions. In vivo, disulfide bond formation is mainly catalyzed by protein disulfide isomerase. To elucidate the physiologic roles of protein disulfide isomerase in the folding of conotoxins, we have cloned a novel full-length protein disulfide isomerase from Conus marmoreus. Its ORF encodes a 500 amino acid protein that shares sequence homology with protein disulfide isomerases from other species, and 70% homology with human protein disulfide isomerase. Enzymatic analyses of recombinant C. marmoreus protein disulfide isomerase showed that it shared functional similarities with human protein disulfide isomerase. Using conotoxins tx3a and sTx3.1 as substrate, we analyzed the oxidase and isomerase activities of the C. marmoreus protein disulfide isomerase and found that it was much more efficient than glutathione in catalyzing oxidative folding and disulfide isomerization of conotoxins. We further demonstrated that macromolecular crowding had little effect on the protein disulfide isomerase-catalyzed oxidative folding and disulfide isomerization of conotoxins. On the basis of these data, we propose that the C. marmoreus protein disulfide isomerase plays a key role during in vivo folding of conotoxins. 相似文献
10.
11.
To elucidate the physiological roles and regulation of a protein disulfide isomerase (PDI) from the fission yeast Schizosaccharomyces pombe, the full-length PDI gene was ligated into the shuttle vector pRS316, resulting in pPDI10. The determined DNA sequence carries
1,636 bp and encodes the putative 359 amino acid sequence of PDI with a molecular mass of 39,490 Da. In the amino acid sequence,
the S. pombe PDI appears to be very homologous to A. thaliana PDI. The S. pombe cells harboring pPDI10 showed increased PDI activity and accelerated growth, suggesting that the cloned PDI gene is functioning
and involved in the yeast growth. The 460 bp upstream region of the PDI gene was fused into promoterless β-galactosidase gene
of the shuttle vector YEp367R to generate pYUPDI10. The synthesis of β-galactosidase from the PDI–lacZ fusion gene was enhanced by oxidative stress, such as superoxide anion and hydrogen peroxide. It was also induced by some
non-fermentable and fermentable carbon sources. Nitrogen starvation was able to enhance the synthesis of β-galactosidase from
the PDI–lacZ fusion gene. The enhancement by oxidative stress and fermentable carbon sources did not depend on the presence of Pap1. The
PDI mRNA levels were increased in both Pap1-positive and Pap1-negative cells treated with glycerol. Taken together, the S. pombe PDI gene is involved in cellular growth and response to nutritional and oxidative stress. 相似文献
12.
Shiyu Wang Shuin Park Vamsi K. Kodali Jaeseok Han Theresa Yip Zhouji Chen Nicholas O. Davidson Randal J. Kaufman 《Molecular biology of the cell》2015,26(4):594-604
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly. 相似文献
13.
Rudolf A. Römer Stephen A. Wells J. Emilio Jimenez‐Roldan Moitrayee Bhattacharyya Saraswathi Vishweshwara Robert B. Freedman 《Proteins》2016,84(12):1776-1785
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc. 相似文献
14.
DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of chemically denatured citrate synthase and prevents their aggregation in vitro. Citrate synthase reactivation experiments in the presence of DsbG suggest that DsbG binds with high affinity to early unstructured protein folding intermediates. DsbG is one of the first periplasmic proteins shown to have general chaperone activity. This ability to chaperone protein folding is likely to increase the effectiveness of DsbG as a protein disulfide isomerase. 相似文献
15.
This communication reports a new design of peptide disulfide, RKCGCFF, for facilitating oxidative protein refolding. The new design mimics the properties of protein disulfide isomerase (PDI) by introducing hydrophobic and positively charged patches into the two terminals of disulfide CGC. RKCGCFF was found more effective than the traditional oxidant oxidized glutathione (GSSG) as well as its counterpart, RKCGC, in facilitating the oxidative refolding of lysozyme. More importantly, RKCGCFF could improve lysozyme refolding yield at a high concentration (0.7 mg/mL). The research proved that incorporation of hydrophobic and charged patches into the CGC disulfide made the oxidant more similar to PDI in structure and properties. 相似文献
16.
Warsame A Vad R Kristensen T Oyen TB 《Biochemical and biophysical research communications》2001,281(5):1176-1182
Protein disulphide isomerases belong to the thioredoxin superfamily of protein-thiol oxidoreductases that have two double-cysteine redox-active sites and take part in protein folding in the endoplasmic reticulum (ER). We report here the cloning of a Pichia pastoris genomic DNA fragment (2919 bp) that encodes the full length of a protein disulphide isomerase (PpPDI). The deduced amino acid sequence of PDI consists of 517 residues and carries the two characteristic PDI-type redox-active domains -CGHC-, separated by 338 residues, and two potential N-glycosylation sites. The N-terminal end forms a putative signal sequence, and an acidic C-terminal region represents a possible calcium-binding domain. Together with the -HDEL ER retrieval sequence at the C-terminus, these features indicate that the gene encodes a redox-active ER-resident protein disulphide isomerase. The nucleotide sequence, which also contains two other open reading frames, has been submitted to the EMBL Nucleotide Sequence Database, Accession No. AJ302014. 相似文献
17.
Recent protein engineering studies have confirmed the multidomain nature of protein disulfide isomerase previously suggested on the basis of analysis of its amino acid sequence. The boundaries of three domains, denoted a, a' and b, have been determined, and each domain has been expressed as an individual soluble folded protein. In this report, the boundaries of the final structural domain, b', are defined by a combination of restricted proteolysis and protein engineering approaches to complete our understanding of the domain organization of PDI. Using these data an optimized polypeptide construct has been prepared and characterized with a view to further structural and functional studies. 相似文献
18.
Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs). These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX). As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR). Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR. 相似文献
19.
Nuclear magnetic resonance characterization of the N-terminal thioredoxin-like domain of protein disulfide isomerase. 总被引:4,自引:2,他引:4 下载免费PDF全文
J. Kemmink N. J. Darby K. Dijkstra R. M. Scheek T. E. Creighton 《Protein science : a publication of the Protein Society》1995,4(12):2587-2593
A genetically engineered protein consisting of the 120 residues at the N-terminus of human protein disulfide isomerase (PDI) has been characterized by 1H, 13C, and 15N NMR methods. The sequence of this protein is 35% identical to Escherichia coli thioredoxin, and it has been found also to have similar patterns of secondary structure and beta-sheet topology. The results confirm that PDI is a modular, multidomain protein. The last 20 residues of the N-terminal domain of PDI are some of those that are similar to part of the estrogen receptor, yet they appear to be an intrinsic part of the thioredoxin fold. This observation makes it unlikely that any of the segments of PDI with similarities to the estrogen receptor comprise individual domains. 相似文献
20.
Distribution of protein disulfide isomerase in rat hepatocytes 总被引:2,自引:0,他引:2
S Akagi A Yamamoto T Yoshimori R Masaki R Ogawa Y Tashiro 《The journal of histochemistry and cytochemistry》1988,36(12):1533-1542
We investigated quantitatively the distribution of protein disulfide isomerase (PDI) in rat hepatocytes by immunocytochemistry using a post-embedding protein A-gold technique. In hepatocytes, gold particles were mainly localized in the intracisternal space of the rough and smooth endoplasmic reticulum (ER) and nuclear envelopes. Autolysosomes engulfing ER were occasionally densely labeled, especially in rat hepatocytes previously treated with leupeptin in vivo, suggesting that the autophagosome-autolysosome system may be an important route for degradation of PDI. A few gold particles were also found on the plasma membranes. Localization of gold particles on the other subcellular organelles, such as Golgi apparatus, peroxisomes, and nuclear matrix, was sparse and at the control level. The predominant localization of PDI on the intracisternal surface of the ER and nuclear envelope supports a potential role of PDI in the formation of disulfide bonds of nascent polypeptides, thus accelerating formation of the higher-order structure of secretory and membrane proteins and rendering the translocation process irreversible. 相似文献