首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were to examine (a) the relationship between maximal oxygen uptake (VO(2)max) and several performance indices of multiple sprint cycling; (b) the relationship between maximal accumulated oxygen deficit (MAOD) and those same performance indices; and (c) the influence of recovery duration on the magnitude of those relationships. Twenty-five physically active men completed a VO(2)max test, a MAOD test, and 2 maximal intermittent (20 x 5 seconds) sprint cycling tests with contrasting recovery periods (10 seconds or 30 seconds). Mean +/- SD for age, height, and body mass were 20.6 +/- 1.5 years, 177.2 +/- 5.4 cm, and 78.2 +/- 8.2 kg, respectively. All tests were conducted on a friction-braked cycle ergometer with subsequent data normalized for body mass. Moderate (0.3 < or = r < 0.5) positive correlations were observed between power output data and MAOD (range, 0.31-0.46; 95% confidence limits, -0.10 to 0.72). Moderate to large positive correlations also were observed between power output data and VO(2)max, the magnitude of which increased as values were averaged across all sprints (range, 0.45-0.67; 95% confidence limits 0.07-0.84). Correlations between fatigue and VO(2)max were greater in the intermittent protocol with 30-second recovery periods (r = -0.34; 95% confidence limits, 0.06 to -0.65). The results of this study reflect the complex energetics associated with multiple sprint work. Though the findings add support to the idea that multiple sprint sports demand a combination of speed and endurance, further longitudinal research is required to confirm the relative importance of these parameters.  相似文献   

2.
We investigated in 73 male ultraendurance mountain bikers, with (mean and SD) age 39.1 (8.6) years, weight 74.4 (8.3) kg, height 1.78 (0.07) m, and a body mass index of 23.3 (1.9) kg·m?2, whether variables of anthropometry, training, or prerace experience were associated with race time using bi and multivariate analysis. Our investigation was conducted at the "Swiss Bike Masters," which covers a distance of 120 km and an altitude of 5,000 m. In the bivariate analysis, body mass index (r = 0.29), circumference of upper arm (r = 0.28), sum of upper body skinfolds (r = 0.38), sum of lower body skinfolds (r = 0.25), sum of 8 skinfolds (r = 0.36), percent body fat (r = 0.41), total cycling kilometers per year (r = -0.47), yearly volume in both mountain bike (r = -0.33) and road cycling (r = -0.52), number of training units per week (r = -0.48), distance per unit in road cycling (r = -0.33), average speed during training in road cycling (r = -0.33), and personal best time in the "Swiss Bike Masters"(r = 0.67) were related to race time. In the multiple linear regression analysis, personal best time in the "Swiss Bike Masters" (p = 0.000), total yearly cycling kilometers (p = 0.004), and yearly training kilometers in road cycling (p = 0.017) were related to race time. When the personal best time was the dependent variable in a separate regression model, total yearly cycling kilometers (p = 0.002) remained the single predictor variable. We concluded that finishing a particular mountain bike ultramarathon does not seem to require a special anthropometry but rather a specific skill and experience for this selective kind of race coupled with a high training volume. For practical use, we concluded that successful athletes in a mountain bike ultramarathon, in a special environment and using sophisticated equipment, need prerace experience coupled with high training volume, rather than any special anthropometry.  相似文献   

3.
We have studied the variations induced in iron status parameters by four endurance races of different lengths. A comprehensive group of 48 healthy, non-iron deficient, endurance athletes were evaluated before and after four different cross-country and roller ski races: I = Skirollonga, roller ski race for individuals (n = 10), mean duration (MD) = 1 h 48 min; II = Marcialonga, cross-country ski race for individuals (n = 9) MD = 3 h 10 min; III = 12-h of Caldonazzo (Trento-Italy) roller ski relay race (n = 13) MD = 12 h; IV = 24-h of Pinzolo (Trento-Italy) cross-country ski relay race (n = 16) MD = 24 h. In the relays the MD includes both exercise and recovery times. Blood samples were taken before and after every race for the determination of the following haematological parameters: red blood count, haemoglobin, and packed cell volume, serum iron concentration [SI], serum ferritin concentration [FERR] and total iron binding capacity (TIBC). The results showed a constant significant increase of [FERR] after the races (+44.9% in I, +50.5% in II, +51.2% in III and +36.5% in IV, P less than 0.01) while [SI] increased only in the first two races (+28.2% in I and +19.7% in II, P less than 0.01) and showed a remarkable decrease in the longer races (-46.1% in III and -39% in IV, P less than 0.01). The TIBC increased in all the races (except II) to the same extent (range 10%-12%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Thermoregulatory and cardiorespiratory responses to bicycling 55 km (mean speed 9.7 m X s-1) outdoors (15 degrees C DB) were compared to equivalent cycle ergometry (90 min at 65% VO2max) in the laboratory (20-23 degrees C DB, 50% RH) in 7 trained cyclists. Outdoor environmental conditions were simulated with fans and lamps, and were contrasted with standard no-wind, no-sun laboratory conditions. Sweating rate was similar during outdoor and laboratory simulated outdoor cycling (0.90 and 0.87 to 0.94 1 X h-1 respectively). During outdoor bicycling, mean heart rate (161 bt X min-1) was 7-13% higher (p less than .05) than under laboratory conditions, suggesting a greater strain for a similar external work rate. The increase in rectal temperature (0.8 degrees C) was 33-50% less (p less than 0.05) at the cooler outdoor ambient temperature than in the laboratory. Thermoregulatory stress was greater under the no-fan, no-lamp laboratory condition than during simulated outdoor conditions (36-38% greater (p less than 0.05) sweating rate, 15-18% greater (p less than 0.01) mean skin temperature, 6.4 to 7.8 fold greater (p less than 0.01) amount of clothing-retrained sweat). The cooling wind encountered in actual road bicycling apparently reduces thermoregulatory and circulatory demands compared with stationary cycle ergometry indoors. Failure to account for this enhanced cooling may result in overestimation of the physiological stress of actual road cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Determinants of metabolic cost during submaximal cycling.   总被引:4,自引:0,他引:4  
The metabolic cost of producing submaximal cycling power has been reported to vary with pedaling rate. Pedaling rate, however, governs two physiological phenomena known to influence metabolic cost and efficiency: muscle shortening velocity and the frequency of muscle activation and relaxation. The purpose of this investigation was to determine the relative influence of those two phenomena on metabolic cost during submaximal cycling. Nine trained male cyclists performed submaximal cycling at power outputs intended to elicit 30, 60, and 90% of their individual lactate threshold at four pedaling rates (40, 60, 80, 100 rpm) with three different crank lengths (145, 170, and 195 mm). The combination of four pedaling rates and three crank lengths produced 12 pedal speeds ranging from 0.61 to 2.04 m/s. Metabolic cost was determined by indirect calorimetery, and power output and pedaling rate were recorded. A stepwise multiple linear regression procedure selected mechanical power output, pedal speed, and pedal speed squared as the main determinants of metabolic cost (R(2) = 0.99 +/- 0.01). Neither pedaling rate nor crank length significantly contributed to the regression model. The cost of unloaded cycling and delta efficiency were 150 metabolic watts and 24.7%, respectively, when data from all crank lengths and pedal speeds were included in a regression. Those values increased with increasing pedal speed and ranged from a low of 73 +/- 7 metabolic watts and 22.1 +/- 0.3% (145-mm cranks, 40 rpm) to a high of 297 +/- 23 metabolic watts and 26.6 +/- 0.7% (195-mm cranks, 100 rpm). These results suggest that mechanical power output and pedal speed, a marker for muscle shortening velocity, are the main determinants of metabolic cost during submaximal cycling, whereas pedaling rate (i.e., activation-relaxation rate) does not significantly contribute to metabolic cost.  相似文献   

6.
This study was to describe and compare the physiological demands of ultra-endurance cyclists during a 24 h cycling relay race. Eleven male athletes (means +/- SD: 34.8 +/- 5.6 years; 71.6 +/- 4.9 kg; 174.6 +/- 7.3 cm; BMI 23.5 +/- 0.5 kg/m2; VO2 max: 66.0 +/- 6.4 ml/kg/min) participated in the study; eight in teams with a format of four riders (4C) and three in teams with six riders (6C). To investigate exercise intensity, heart rate (HR) was recorded while cycling using portable telemetric monitors. Three different exercise intensities were defined according to the reference HR values obtained during a pre race laboratory incremental VO2 max test: Zone I (< anaerobic threshold [AT]), Zone II (between AT and the respiratory compensation point [RCP]), Zone III (> RCP). Total volume and intensity were integrated as a single variable (training impulse: TRIMP). The score for TRIMP in each zone was computed by multiplying the accumulated duration in this zone by a multiplier for this particular zone of exercise intensity. The average intensity did not differ between cyclists in 4C (means +/- SD; 4C: 87 +/- 3 HRmax) and 6C (87 +/- 1% of HRmax), despite the higher volume performed by 4C (means +/- SD; 4C: 361 +/- 65; 6C: 242 +/- 25 per min; P = 0.012). These differences in total exercise volume significantly affected the values TRIMP accumulated (means +/- SD; 4C: 801 +/- 98, confidence interval [CI] 95%: 719 - 884; 6C: 513 +/- 25, CI 95%: 451 - 575; P = 0.012). The ultra-endurance threshold of 4C and 6C athletes lies at about 87% of HRmax for both. Although the intensity profile was similar, the TRIMP values differed significantly as a consequence of the higher volume performed by the 4C cyclists.  相似文献   

7.
The record history of running, swimming and ice-skating, over various distances, was analyzed. A mean period of about 66 years for the 18 male events and of about 50 years for the 14 female events was studied. Over a given distance the velocity (v) was related to the dates of the records minus 1900 (T) according to polynomial functions like: v = a0 + a1T + a2T2 + ..... + anTn. In 21 out of the 32 events equations of first or second degree fitted the experimental data. The mean correlation coefficient was 0.979 +/- 0.019 (+/- S.D.). The ratio between predicted (vlp) and actual value (vl) of the last records was 0.999 +/- 0.010. For T corresponding to v1 (Tl), the rate of record growth was slowing down in 5 events. Hence up to June 1981 a tendency towards an asymptotic v was not yet a general phenomenon. At Tl the range of the relative rate of increase of v (dvp/dT . vlp) was 0.9 . 10(-3) per year (800 m - female running) and 12.4 . 10(-3) per year (800 m - female swimming). dv/dT . vlp in swimming and skating was similar in both sexes but 4 times faster than in male running. Less marked differences were found for female running. A lowering of the cost of transport was probably the main reason of the fast growth of swimming and skating records. The numerical constants calculated from linear regression of v versus the time of the races over different distances did not seem to have a clear physiological meaning, as reported in the previous literature.  相似文献   

8.
Energy-deprivation contractures were investigated in unloaded rat ventricular myocytes. Application of 2 mM cyanide in the presence of 10 mM 2-deoxyglucose (metabolic blockade) led to a rapid shortening "contracture" (maximum speed 1.5 +/- 0.2% control cell length/s). Cells shortened to a constant length of 69 +/- 1.6% of the control length. Removal of cyanide caused cells to shorten further ("recontracture"), before relaxing towards the control length. Cells shortened to 57 +/- 2.0% during the recontracture. Similar behaviour was observed in zero extracellular [Ca2+]. Cells permeabilized with saponin (0.1% w/v) responded to the removal of ATP from the bathing solution, and to readdition of ATP, as intact cells did to complete metabolic blockade and its removal. In these permeabilized cells, the extent and speed of contracture shortening were similar at pCa = 7 and pCa greater than 9. When the bath concentration of ATP ([ ATP]b) was lowered to zero, shortening stopped at about 70% of the control length. However, when [ATP]b was lowered to an intermediate level (4-20 microM), cells contracted to lengths as short as 30% of the control length. Similarly, when [ATP]b was restored from zero to an intermediate concentration (4-20 microM), recontracture shortening continued without relaxation. The peak speed of this Ca2(+)-independent shortening showed a sigmoidal dependence on pMgATP (pMgATP0.5 = 4.0). Phosphocreatine (10 mM) shifted the ATP dependence of Ca2(+)-independent shortening to lower [ATP]b (pMgATP0.5 = 5.0), suggesting that gradients of [ATP] could exist between the bath and the myofilaments. Ca2(+)-independent shortening was inhibited by the chemical phosphatase 2,3-butanedione monoxime (BDM), although BDM did not relax cells from the shortened state during energy deprivation. Using a simple model, we show that the results can be explained by cross-bridge cycling occurring independently of Ca2+ over a "window" range of [MgATP] (0.1-100 microM). Therefore, when [MgATP] falls, cross-bridge cycling occurs and the cell shortens. As [MgATP] falls to very low levels ([ MgATP] less than 1 microM), shortening ceases as the rate of cross-bridge cycling declines. Recontracture occurs on restoring ATP production, because stiffness falls and Ca2(+)-independent cross-bridge cycling initially increases. As [MgATP] rises above 100 microM, Ca2(+)-independent cross-bridge cycling ceases and the cell relaxes towards the control length. We conclude that energy-deprivation contractures, and recontractures, can result from changes in [MgATP] and do not necessarily require changes in [Ca2+]i.  相似文献   

9.
Knechtle, B, Knechtle, P, Rüst, CA, Rosemann, T, and Lepers, R. Finishers and nonfinishers in the 'Swiss Cycling Marathon' to qualify for the 'Race across America.' J Strength Cond Res 25(12): 3257-3263, 2011-We compared the characteristics of prerace anthropometry, previous experience, and training and support during the race in 39 finishers and 37 nonfinishers in the 'Swiss Cycling Marathon,' over 720 km. In this race, the cyclists intended to qualify for the 'Race across America,' the longest nonstop cycling race in the World from the West to the East of the USA. Finishers in the 'Swiss Cycling Marathon' had a lower body mass, a lower body mass index, lower circumferences of upper arm and thigh, a lower percent body fat, completed more weekly training units, covered more kilometers in the longest training ride, rode at a faster speed during training, rode more kilometers per week and for more hours, had more previous finishes in the 'Swiss Cycling Marathon' and a lighter race bike compared to the nonfinishers. In the bivariate analysis, the cycling distance per training unit (r = 0.37), the duration per training unit (r = 0.44), the speed per training unit (r = -0.59), using nutrition provided by the organizer (r = 0.50), and using own nutrition (r = 0.49) during the race were significantly and positively associated with race time. For practical applications, anthropometric characteristics such as a low body mass or low body fat were not related to race time, whereas training characteristics and nutrition during the race were associated with race time. The key to a successful finish in an ultraendurance cycling race such as the 'Swiss Cycling Marathon' seems a high speed in training and an appropriate nutrition during the race.  相似文献   

10.
The effect of different muscle shortening velocity was studied during cycling at a pedalling rate of 60 and 120 rev.min(-1) on the [K+]v in humans. Twenty-one healthy young men aged 22.5+/-2.2 years, body mass 72.7+/-6.4 kg, VO2 max 3.720+/-0.426 l. min(-1), performed an incremental exercise test until exhaustion. The power output increased by 30 W every 3 min, using an electrically controlled ergometer Ergoline 800 S (see Zoladz et al. J. Physiol. 488: 211-217, 1995). The test was performed twice: once at a cycling frequency of 60 rev.min(-1) (test A) and a few days later at a frequency of 120 rev. min(-1) (test B). At rest and at the end of each step (i.e. the last 15 s) antecubital venous blood samples for [K+]p were taken. Gas exchange variables were measured continuously (breath-by-breath) using Oxycon Champion Jaeger. The pre-exercise [K+]v in both tests was not significantly different amounting to 4.24+/-0.36 mmol.l(-1) in test A, and 4.37+/-0.45 mmol.l(-1) in test B. However, the [K+]p during cycling at 120 rev. min(-1) was significantly higher (p<0.001, ANOVA for repeated measurements) at each power output when compared to cycling at 60 rev.min(-1). The maximal power output reached 293+/-31 W in test A which was significantly higher (p<0.001) than in test B, which amounted to 223+/-40 W. The VO2max values in both tests reached 3.720+/-0.426 l. min(-1) vs 3.777+/-0.514 l. min(-1). These values were not significantly different. When the [K+]v was measured during incremental cycling exercise, a linear increase in [K+]v was observed in both tests. However, a significant (p<0.05) upward shift in the [K+]v and a % VO2max relationship was detected during cycling at 120 rev.min(-1). The [K+]v measured at the VO2max level in tests A and B amounted to 6.00+/-0.47 mmol.l-1 vs 6.04+/-0.41 mmol.l-1, respectively. This difference was not significant. It may thus be concluded that: a) generation of the same external mechanical power output during cycling at a pedalling rate of 120 rev.min(-1) causes significantly higher [K+]v changes than when cycling at 60 rev.min(-1), b) the increase of venous plasma potassium concentration during dynamic incremental exercise is linearly related to the metabolic cost of work expressed by the percentage of VO2max (increase as reported previously by Vollestad et al. J. Physiol. 475: 359-368, 1994), c) there is a tendency towards upward up shift in the [K+]v and % VO2max relation during cycling at 120 rev.min(-1) when compared to cycling at 60 rev.min(-1).  相似文献   

11.
Ultra-endurance performance is of increasing popularity. We investigated the associations between anthropometry, training and support during racing, with race performance in 67 male recreational ultra-endurance cyclists participating in the 'Swiss Cycling Marathon' over 600 kilometres, an official qualifier for the cycling ultra-marathon 'Paris-Brest-Paris'. The 54 finishers showed no differences in anthropometry and did not train differently compared to the 13 non-finishers. During the race, the finishers were significantly more frequently racing alone than being followed by a support crew. After bivariate analysis, percent body fat (r = 0.43), the cycling distance per training unit (r = -0.36), the duration per training unit (r = -0.31) and the sleep time during the race (r = 0.50) were related to overall race time. The 23 non-sleepers in the finisher group completed the race within (mean and IQR) 1,567 (1,453-1,606) min, highly significantly faster than the 31 sleepers with 1,934 (1,615-2,033) min (P = 0.0003). No variable of support during the race was associated with race time. After multivariate analysis, percent body fat (P = 0.026) and duration per training unit (P = 0.005) remained predictor variables for race time. To summarize, for a successful finish in a cycling ultra-marathon over 600 kilometres such as the 'Swiss Cycling Marathon', percent body fat and duration per training unit were related to race time whereas equipment and support during the race showed no association. Athletes with naps were highly significantly slower than athletes without naps.  相似文献   

12.
Pulmonary O2 uptake (VO2p) and muscle deoxygenation kinetics were examined during moderate-intensity cycling (80% lactate threshold) without warm-up and after heavy-intensity warm-up exercise in young (n = 6; 25 +/- 3 yr) and older (n = 5; 68 +/- 3 yr) adults. We hypothesized that heavy warm-up would speed VO2p kinetics in older adults consequent to an improved intramuscular oxygenation. Subjects performed step transitions (n = 4; 6 min) from 20 W to moderate-intensity exercise preceded by either no warm-up or heavy-intensity warm-up (6 min). VO2p was measured breath by breath. Oxy-, deoxy-(HHb), and total hemoglobin and myoglobin (Hb(tot)) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). VO2p (phase 2; tau) and HHb data were fit with a monoexponential model. After heavy-intensity warm-up, oxyhemoglobin (older subjects: 13 +/- 9 microM; young subjects: 9 +/- 8 microM) and Hb(tot) (older subjects: 12 +/- 8 microM; young subjects: 14 +/- 10 microM) were elevated (P < 0.05) relative to the no warm-up pretransition baseline. In older adults, tauVO2p adapted at a faster rate (P < 0.05) after heavy warm-up (30 +/- 7 s) than no warm-up (38 +/- 5 s), whereas in young subjects, tauVO2p was similar in no warm-up (26 +/- 7 s) and heavy warm-up (25 +/- 5 s). HHb adapted at a similar rate in older and young adults after no warm-up; however, in older adults after heavy warm-up, the adaptation of HHb was slower (P < 0.01) compared with young and no warm-up. These data suggest that, in older adults, VO2p kinetics may be limited by a slow adaptation of muscle blood flow and O2 delivery.  相似文献   

13.
Fish intake, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and in some cases alpha-linolenic acid (ALA) have been associated with reduced risk of cardiovascular events and death. The association between n-3 fatty acids in plasma lipids and the progression of coronary artery atherosclerosis was assessed among women with established coronary artery disease (CAD). A prospective cohort study involved postmenopausal women (n = 228) participating in the Estrogen Replacement and Atherosclerosis Trial. Quantitative coronary angiography was performed at baseline and after 3.2 +/- 0.6 (mean +/- SD) years. Women with plasma phospholipid (PL) DHA levels above the median, compared with below, exhibited less atherosclerosis progression, as expressed by decline in minimum coronary artery diameter (-0.04 +/- 0.02 and -0.10 +/- 0.02 mm, respectively; P = 0.007) or increase in percentage stenosis (1.34 +/- 0.76% and 3.75 +/- 0.74%, respectively; P = 0.006), and had fewer new lesions [2.0% (0.5-3.5%) of measured segments (95% confidence interval) and 4.2% (2.8-5.6%), respectively; P = 0.009] after adjustments for cardiovascular risk factors. Similar results were observed for DHA in the triglycerides (TGs). EPA and ALA in plasma lipids were not significantly associated with atherosclerosis progression. Consistent with higher reported fish intake, higher levels of plasma TG and PL DHA are associated with less progression of coronary atherosclerosis in postmenopausal women with CAD.  相似文献   

14.
In this experiment we studied the effect of different pedalling rates during cycling at a constant power output (PO) 132+/-31 W (mean+/-S.D.), corresponding to 50% VO2 max, on the oxygen uptake and the magnitude of the slow component of VO2 kinetics in humans. The PO corresponded to 50% of VO2 max, established during incremental cycling at a pedalling rate of 70 rev.min(-1). Six healthy men aged 22.2+/-2.0 years with VO2 max 3.89+/-0.92 l.min(-1), performed on separate days constant PO cycling exercise lasting 6 min at pedalling rates 40, 60, 80, 100 and 120 rev.min(-1), in random order. Antecubital blood samples for plasma lactate [La]pl and blood acid-base balance variables were taken at 1 min intervals. Oxygen uptake was determined breath-by-breath. The total net oxygen consumed throughout the 6 min cycling period at pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1) amounted to 7.727+/-1.197, 7.705+/-1.548, 8.679+/-1.262, 9.945+/-1.435 and 13.720+/-1.862 l, respectively for each pedalling rate. The VO2 during the 6 min of cycling only rose slowly by increasing the pedalling rate in the range of 40-100 rev.min(-1). This increase, was 0.142 l per 20 rev.min(-1) on the average. Plasma lactate concentration during the sixth minute of cycling changed little within this range of pedalling rates: the values were 1.83+/-0.70, 1.80+/-0.48, 2.33+/-0.88 and 2.52+/-0.33 mmol.l(-1). The values of [La]pl reached in the 6th minute of cycling were not significantly different from the pre-exercise levels. Blood pH was also not affected by the increase of pedalling rate in the range of 40-100 rev.min(-1). However, an increase of pedalling rate from 100 to 120 rev.min(-1) caused a sudden increase in the VO2 amounting to 0.747 l per 20 rev.min(-1), accompanied by a significant increase in [La]pl from 1.21+/-0.26 mmol.l(-1) in pre-exercise conditions to 5.92+/-2.46 mmol.l(-1) reached in the 6th minute of cycling (P<0.01). This was also accompanied by a significant drop of blood pH, from 7.355+/-0.039 in the pre-exercise period to 7.296+/-0.060 in the 6th minute of cycling (P < 0.01). The mechanical efficiency calculated on the basis of the net VO2 reached between the 4th and the 6th minute of cycling amounted to 26.6+/-2.7, 26.4+/-2.0, 23.4+/-3.4, 20.3+/-2.6 and 14.7+/-2.2%, respectively for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1). No significant increase in the VO2 from the 3rd to the 6th min (representing the magnitude of the slow component of VO2 kinetics) was observed at any of the pedalling rates (-0.022+/-0.056, -0.009+/-0.029, 0.012+/-0.073, 0.030+/-0.081 and 0.122+/-0.176 l.min(-1) for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1), respectively). Thus a significant increase in [La]pl and a decrease in blood pH do not play a major role in the mechanism(s) responsible for the slow component of VO2 kinetics in humans.  相似文献   

15.
The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a ‘Metabolic Energy Model’ and a ‘Power Output Model’. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists? power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0–24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46 km/h. However, a fully horizontal torso is not optimal. For speeds below 30 km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.  相似文献   

16.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A number of blood biochemical parameters, including the activities of the plasma enzymes creatine kinase (CK), aspartate aminotransferase (ASAT), lactate dehydrogenase and alkaline phosphatase, were measured in 23 athletes before, and immediately after a 56-km running race. Of the 23 athletes, 18 had previously completed standard 42-km marathon or longer (up to 90-km) ultra-marathon races, whereas not one of the other five athletes had previously run in a long-distance race. After the race, plasma CK and ASAT activities had both risen at least 280% more in the novice runners despite their much slower mean running speed (9.8 +/- 0.4 vs. 13.8 +/- 0.3 hm/h). There were no other inter-group differences in the absolute levels of the other measured biochemical parameters, although the rise in plasma calcium during the race was significantly greater in the experienced marathon runners. This study shows that either higher levels of training, or previous ultra-marathon racing experience, or both, is associated with lower immediate post-exercise levels of plasma enzyme activity. This is compatible with the finding that physical training reduces post-exercise plasma enzyme levels.  相似文献   

18.
Respiratory muscle dysfunction limits exercise endurance in severe chronic airflow obstruction (CAO). To investigate whether inspiring O2 alters ventilatory muscle recruitment and improves exercise endurance, we recorded pleural (Ppl) and gastric (Pga) pressures while breathing air or 30% O2 during leg cycling in six patients with severe CAO, mild hypoxemia, and minimal arterial O2 desaturation with exercise. At rest, mean (+/- SD) transdiaphragmatic pressure (Pdi) was lower inspiring 30% O2 compared with air (23 +/- 4 vs. 26 +/- 7 cmH2O, P less than 0.05), but the pattern of Ppl and Pga contraction was identical while breathing either gas mixture. Maximal transdiaphragmatic pressure was similar breathing air or 30% O2 (84 +/- 30 vs. 77 +/- 30 cmH2O). During exercise, Pdi increased similarly while breathing air or 30% O2, but the latter was associated with a significant increase in peak inspiratory Pga and decreases in peak inspiratory Ppl and expiratory Pga. In five out of six patients, exercise endurance increased with O2 (671 +/- 365 vs. 362 +/- 227 s, P less than 0.05). We conclude that exercise with O2 alters ventilatory muscle recruitment and increases exercise endurance. During exercise inspiring O2, the diaphragm performs more ventilatory work which may prevent overloading the accessory muscles of respiration.  相似文献   

19.
The purpose of the present study was to comprehensively examine oxygen consumption (VO(2)) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (VO(2 max)) in both cycling and running exercise, seven subjects (age 26.6 +/- 5.1 yr) completed a series of "square-wave" rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Delta (Delta being the difference between LT and VO(2 max)). VO(2) responses were fit with either a two- (LT) exponential model. The parameters of the VO(2) kinetic response were similar between exercise modes, except for the VO(2) slow component, which was significantly (P < 0.05) greater for cycling than for running at 50 and 75%Delta (334 +/- 183 and 430 +/- 159 ml/min vs. 205 +/- 84 and 302 +/- 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.  相似文献   

20.
It has been reported that activation of autonomic effectors during mental simulation of voluntary motor actions (motor imagery: MI) may be explained by two different factors, i.e., functions of preparation or anticipation of actual exercise (motor anticipation) and the central motor programming/planning which acts during actual motor action (motor programming). This study was designed to clarify how these factors participate during MI, utilizing two mental tasks with high mental stress, i.e., MI and mental arithmetic (MA). Several autonomic effectors' responses were compared between MI of a 500 m speed skating sprint and MA. Subjects were eight 18 to 25 year old young male speed skate athletes, all of them could easily and vividly imagine a 500 m speed skating sprint. Duration of the MI ranged from 35 to 38 sec and these were very close to each subject's actual best record (means of absolute differences were less than 0.6 sec, i.e., less than 1.7% relatively). A significant decrease of skin resistance (SR), increases of heart rate (HR) and respiration rate were observed in both MI and MA when compared to each control resting level (excluding one subject for respiration rate during MI). SR decreased during MI (mean and SD of 8 subjects: 45.9 +/- 17.7%) and MA (39.7 +/- 16.8%), with no significant differences between MI and MA (t = 1.29, by paired t-test). HR increased significantly above control values in MA (10.3 +/- 4.3%) and MI (44.3 +/- 18.8%). However, the increase during MA was significantly smaller (t = 4.99, p < 0.001) than in MI. Respiratory rate increased significantly in both MI (46.5 +/- 30.9%) and MA (27.7 +/- 14.6%), with no significant difference between MI and MA (t = 1.82) due to the large individual variation in MI. The frequency of respiration was fairly regular during MA, but quite irregular during MI (similar to those during actual motor actions). The central nervous system which acts in MI may possess the function of activation of target effectors which play an important role in actual exercise, on the basis of incremental vigilance level induced by the function of motor anticipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号