首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Atoji  Y Kitamura  Y Suzuki 《Acta anatomica》1990,139(2):151-153
The perineuronal extracellular matrix of the canine superior olivary nuclei was examined by the histochemical method. The extracellular matrix was stained with Alcian blue (pH 1.0 and 2.5), high iron diamine and ruthenium red. The staining intensity of Alcian blue in the extracellular matrix was remarkably reduced after chondroitinase ABC digestion but not after that of heparitinase or hyaluronidase. These results indicate that the extracellular matrix consists of proteoglycans and contains the chondroitin sulfate proteoglycan.  相似文献   

2.
Proteoglycans were identified and localized histochemically and ultrastructurally in normal and hyperplastic arterial intimas in nonhuman primates (Macaca nemestrina). These regions were consistently more alcianophilic than the adjacent medial layers and this alcianophilia was absent after treatment with glycosaminoglycan-degradative enzymes. Ultrastructurally, the intimal intercellular matrix consisted of numerous, irregularly shaped, 200-500-A diameter granules possessing 30--60-A diameter filamentous projections, and these granules were dispersed between collagen and elastic fibers. The granules exhibited a marked affinity for ruthenium red and were interconnected via their filamentous projections. The ruthenium red-positive granules were intimately associated with the plasma membrane of intimal smooth muscle cells and attached to collagen fibrils and elastic fibers. The matrix granules were completely removed after testicular hyaluronidase or chondroitinase ABC digestion but only partially removed after leech hyaluronidase treatment. These results suggest that the matrix granules contain some hyaluronic acid and one or more isomers of chondroitin sulfate. In addition to the large ruthenium red-positive matrix granules, a smaller class of ruthenium red-positive granule (100--200-A diameter) was present within the basement membranes beneath the endothelium and surrounding the smooth muscle cells. Ruthenium red also exhibited an affinity for the surface coat of the smooth muscle cells. The potential importance of proteoglycans in arterial intimal hyperplasia is discussed.  相似文献   

3.
We report here that interleukins have a dramatic effect on extracellular matrix production by cultured endothelial cells. Human umbilical vein endothelial cells incubated with growth media conditioned by lectin-activated human peripheral blood mononuclear leukocytes undergo marked changes in cell shape and elaborate a highly organized extracellular material that is not detectable in untreated cultures. This material has the following characteristics: (a) it is not recognizable by electron microscopy unless the cationic dye, Alcian blue, is added to the fixative; (b) it is visualized as a network of branching and anastomosing fibrils of various thickness that can be resolved into bundles of fine filaments; (c) it is associated with the cell surface, extends between contiguous cells, and coats the culture substrate; (d) it is removed by digestion with glycosaminoglycan-degrading enzymes, such as crude heparinase and chondroitinase ABC. These results demonstrate that soluble factors released by activated peripheral blood mononuclear leukocytes (interleukins) stimulate cultured human umbilical vein endothelial cells to produce a highly structured pericellular matrix containing glycosaminoglycans (probably chondroitin sulfate and/or hyaluronic acid) as a major constituent. We speculate that this phenomenon corresponds to an early step of angiogenesis as observed in vivo as a consequence of interleukin release.  相似文献   

4.
We examined the presence of proteoglycans in the extracellular matrix of cartilage and bone in fetal mouse radii at the ultrastructural level, using the cationic dye polyethyleneimine (PEI). After staining with this dye, the proteoglycans appeared as granules in the uncalcified bone matrix and as extended winding structures in the cartilage matrix. PEI-positive material was removed after treatment of the tissue with chondroitinase ABC. Inhibition of the proteoglycan synthesis by beta-D-xyloside resulted in smaller PEI-positive windings in the cartilage matrix. These observations suggest that the winding, PEI-positive structures represent proteoglycan aggregates. No loss of PEI-positive material in the calcified cartilage matrix was seen, suggesting that proteoglycans do not need to be removed to make the matrix calcifiable.  相似文献   

5.
The ultrastructure of sulphate proteoglycans in basophil granules was examined using cytochemical procedures designed to stabilize and visualize these highly anionic macromolecules in situ. Unfixed or glutaraldehyde-prefixed guinea-pig spleen cells were submitted to fixation/staining in 2.5% glutaraldehyde, 0.2% cuprolinic blue (CB; a cationic phthalocyanin dye) and 0.2 or 0.3M MgCl2 with or without glycosidase treatments. Abundant electron-dense precipitates were present throughout the granule matrix. The stained structures were often arranged in a quasi-crystalline typical banded pattern. Negative control basophils had no electrondense precipitates. Digestion with chondroitinase ABC destroyed the CB-positive electron-dense banded or filamentous patterns while sialidase treatment did not, but led to larger CB-positive filaments in the cytoplasm near the granules. Taking into account their high anionicity, as shown by the stability of dye binding in the presence of 0.3M MgCl2, and their susceptibility to chondroitinase ABC, the CB-precipitates are assumed to be related to the sulphated proteoglycans previously characterized in basophil granules. The CB-positive crystalline or filamentous network of the granule matrix is also assumed to reflect the in situ location and organization of these intracellular proteoglycans and may be involved in maintaining the shape of the granule.  相似文献   

6.
H Hagiwara 《Histochemistry》1992,98(5):305-309
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

7.
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

8.
Proteoglycans (PG) were revealed by electron microscopy using cation dyes, Alcian blue and safranin O. In intact mammary gland of dogs, each histogenetic type of cells had its specific features in the ultrastructure of pericellular matrix proteoglycan component. A thin-stitched net, consisting of small PG granules and thin filaments has been observed in the pericellular space of secretory epithelium. A well-proportioned PG net is absent near fibroblasts and macrophages. Net-like PG structure is found in the endothelium, pericytes and adventitial cells of blood capillaries. Visual changes in PG-containing extracellular matrix are observed in the epithelium of mammary gland tumors.  相似文献   

9.
Mast cells of beige (C57BL/6J) (bg-j/bg-j) mice were examined histochemically and ultrastructurally. Mast cell granules in the beige mice were markedly enlarged and irregular in shape. Granule contents stained uniformly with acidified toluidine blue, but with ruthenium red and Alcian Blue-safranin, two components were evident. The rims of the abnormal granules stained with ruthenium red and with Alcian Blue; the centers of the granules were clear with ruthenium red and stained with safranin. Mast cell granules thus represent another abnormal organelle in the Chédiak-Higashi syndrome.  相似文献   

10.
Trypanosoma lewisi bloodstream and culture forms were agglutinated differentially with low concentrations of the cationic compounds: ruthenium red, ruthenium violet, Alcian blue chloride, 1-hexadecylpyridinium chloride, lanthanum chloride, and cationized ferritin. The bloodstream form trypanosomes gave the highest agglutination levels with each of the compounds tested. Ruthenium red was the most effective inducer of cell agglutination among the several cations used. Trypsin-treated bloodstream forms were agglutinated less in the presence of ruthenium red than untreated controls. Ruthenium red-induced cell agglutination also was lowered with chondroitin sulphate and dextran sulphate, but not with alpha-D-glucose, alpha-D-mannose or with several methyl glycosides. Treatment of the bloodstream trypanosomes with alpha-amylase, dextranase, or neuraminidase had little effect on agglutination levels obtained with ruthenium red. Fine-structure cytochemical staining with ruthenium red, ruthenium violet, and Alcian blue-lanthanum nitrate was used to ascertain the presence and distribution of presumptive carbohydrates in the trypanosome cell surface. The extracellular surface coat of the bloodstream forms stained densely with each of the polycationic dyes. Trypsin treatment removed the surface coat from bloodstream trypanosomes; however, the surface membranes of the organisms were stained densely with the several dyes. Similar surface-membrane staining was obtained with the cationic compounds and the culture forms, which lack a cell surface coat. Cationized ferrin was used at the fine-structure level to visualize the negative surface charge present in the cell surface coat and external membrane of the several trypanosome stages. Results obrained from the agglutination and cytochemistry experiments indicate that complex polysaccharides are present in the surface membranes and cell surface coat of T. lewisi bloodstream forms. Similar conclusions also pertain to the surface membranes of the T. lewisi culture from trypanosomes. The carbohydrates probably represent glycopeptide and glycoprotein structural components of the surface membrane of this organism.  相似文献   

11.
Treatment of cartilage tissue with the cationic dye ruthenium hexammine trichloride (RHT) prior to fixation has been shown to prevent the detachment of chondrocytic plasmalemmata from the pericellular matrix and the aqueous extraction of proteoglycans during the subsequent fixation procedures. However, plasmalemmal rupture is prevented only by the simultaneous addition of RHT and the dialdehydic fixative glutaraldehyde. It is proposed that RHT forms an electrostatic cross-linkage between anionic components within the chondrocytic plasmalemma and proteoglycans of the pericellular matrix; experimental support for this hypothesis is presented. The precise nature of the plasmalemmal components with which RHT interacts is unknown. However, since their anionic properties are apparently lost following treatment with chondroitinase ABC, it seems likely that they represent chondroitin sulfate groups of membrane intercalated proteoglycans.  相似文献   

12.
By use of the cationic dye Cuprolinic Blue in a critical electrolyte concentration method, heavily staining, generally large, filaments have been demonstrated in human lung alveoli. In some lung specimens they are abundant, while in others they are very scanty. The filaments are seen: around bundles of collagen fibrils, at places which seem electron microscopically almost empty, associated with basement membranes around elastin, and sometimes associated with individual collagen fibrils. After poststaining tiny threads--connecting the filaments--could sometimes be observed. The filaments are resistant to treatment with nitrous acid, heparitinase or pronase after prefixation. After digestion with chondroitinase ABC, chondroitinase AC or pronase without prefixation, the filaments are no longer detectable. The tiny threads are chondroitinase ABC resistant. It is concluded that the Cuprolinic Blue-positive filaments represent proteoglycans which contain chondroitin sulfate and/or glucuronic acid-rich dermatan sulfate. The possible role of these proteoglycans in tissue repair is discussed.  相似文献   

13.
The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.  相似文献   

14.
Rat kidneys were perfused with fixative solutions containing either a) a polycationic dye (Alcian blue 8 GX, Astra blue 6 GLL, cuprolinic blue, ruthenium red), b) a monocationic dye (safranine 0), or c) Alcian blue in the presence of a 0.3 M MgCl2 concentration. Whereas solutions of a revealed the glomerular basement membrane proteoglycans as particles or threads 60 nm apart and arranged in a reticular pattern, solutions of b and c demonstrated new morphological aspects of these molecules. They appeared as tiny filamentous structures, about 100 to 160 nm long, ordered in a network-like pattern with a mesh of about 60-nm width. The filaments displayed lateral branches about 20 nm apart and about 25 nm long, projecting within the meshes. We suggest that the filamentous structures are the protein core, and the branches are the glycosaminoglycans of proteoglycan molecules. Because of this arrangement the negatively charged sites of the glomerular basement membrane would lie closer to each other than previously assumed.  相似文献   

15.
The microbial glycocalyx is composed of a variety of polyanionic exopolysaccharides and plays important roles in microbial attachment to different substrata and to other cells. Here we report the successful use of low-voltage scanning electron microscopy (LVSEM) to visualize the glycocalyx in two microbial models (Klebsiella pneumoniae and Enterococcus faecalis biofilms) at high resolution, and also the dependence on fixation containing polycationic dyes for its visualization. Fixation in a paraformaldehyde-glutaraldehyde cocktail without cationic dyes was inadequate for visualizing the glycocalyx, whereas addition of various dyes (alcian blue, safranin, and ruthenium red) to the aldehyde cocktail appeared necessary for stabilization. The cationic dyes varied in size, shape, and charge density, and these factors appeared responsible for different phenotypic appearances of the glycocalyx with each dye. These results suggest that aldehyde fixation with cationic dyes for high-resolution LVSEM will be a useful tool for investigation of microbial biofilms as well as investigation of the extent and role of the glycocalyx in microbial attachment to surfaces.  相似文献   

16.
Cell coats were cytochemically demonstrated for the first time in myxamebae of Fulig- septica, Didymium iridis, Dictyostelium discoideum, Cavostelium apophysatum, and amebae of Naegleria grubei. The stain enhances the cell coats of Physarum polycephalum plasmodia, Ceratiomyxa fruticulosa myxamebae, and Acanthamoeba sp. Cell coats usually unstained by cationic dyes stain intensely with the aid of the new cytochemical protocol utilizing 0.5% Alcian blue in the primary fixative and 0.05% ruthenium red in the secondary fixative.  相似文献   

17.
The dye, triethyl-carbocyanin DBTC, was tested for differential staining of cartilage structures. Femoral head articular cartilage from neonatal rats was processed for histology to demonstrate the interlacunar network. Sections of glycol methacrylate (GMA) embedded cartilage were stained at pH 2.8, 5.4, 6.1 and 8.0 to determine the optimal staining conditions. Only at pH 6.1 were all cartilage structures stained and the best contrast achieved. Streptomyces hyaluronidase, chondroitinase ABC, pepsin, trypsin, and pronase digestions were carried out prior to staining at pH 6.1 to evaluate the selectivity of the stain. Undigested chondrocyte nuclear chromatin stained dark purple; staining intensity was reduced slightly by pepsin or trypsin digestion. Undigested chondrocyte cytoplasm stained light blue but stained purple after hyaluronidase digestion. Undigested extracellular matrix stained light violet; staining was almost entirely eliminated by chondroitinase ABC digestion, was unaffected by hyaluronidase, and was either unaffected or increased after proteinase digestion. Staining of a narrow zone of matrix adjacent to the network was prevented by proteinase digestion while the network element appeared as a thin dark line. The network appears to be a trilaminar structure; a core element of hyaluronic acid and protein surrounded by a protein sheath. Triethyl-carbocyanin DBTC staining of cartilage offers slightly more selectivity and contrast than methylene blue, toluidine blue or safranin O. At pH 6.1, DNA, perhaps RNA, and hyaluronic acid stained deep purple; chondroitin sulfate, light violet; protein (collagen), stained very light violet if at all.  相似文献   

18.
We tested various cationic dyes chemically related to ruthenium hexaammine trichloride (RHT) [i.e., the RHT-cyclohexanedione complex (RHT-CC), pentaamine ruthenium N-dimethylphenylenediimine trichloride (PRT), tris-(bipyridyl)ruthenium (II) chloride (TRC), tris (bipyridyl) iron (II) chloride (TIC), and cobalt hexaammine trichloride (CHT)] for their effectiveness in precipitating cartilage matrix proteoglycans in situ. Dyes were introduced into media at the onset of processing and were present throughout both aldehyde fixation and osmium tetroxide post-fixation. Contrary to expectation, most of the dye-proteoglycan complexes generated and stable under aldehyde fixation conditions were found to be unstable during post-fixation despite the continuing presence of the dye. A similar phenomenon was also found for the cationic dyes commonly used for precipitation of proteoglycans in cartilage tissue sections (such as Acridine Orange, Alcian Blue, Azure A, Methylene Blue, and Ruthenium Red). Only two dyes, i.e., RHT and the newly tested RHT-CC, formed proteoglycan precipitates sufficiently stable to resist disruption and extraction during osmium tetroxide post-fixation. The latter may be particularly useful in semiquantitative analyses of proteoglycan content in unstained tissue sections owing to its intense brown-black color. For applications in which the osmium tetroxide post-fixation step may be omitted, TRC and PRT may also be valuable for semiquantitative histochemistry by virtue of their stable fluorescence and intense violet color signals, respectively.  相似文献   

19.
A new method was developed for a simple non-destructive characterization of bacterial mass in flow systems. Results of partition and transport experiments showed that adsorption of a CAT molecule into the cellular mass resulted in its retardation during flow, which was a good measure of the biomass quantity and distribution. Three dyes, acridine orange (AO), toluidine blue (TB), and safranin O (SO), were chosen as CATs to demonstrate their utility to quantitatively characterize the biomass, its location and morphology in flow system. The results clearly demonstrated the applicability of AO, TB, and SO as cellular absorptive tracers in columnar flow experiments.  相似文献   

20.
Gong R  Zhang X  Liu H  Sun Y  Liu B 《Bioresource technology》2007,98(6):1319-1323
A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. Granules prepared from kohlrabi peel had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), neutral red (NR) and acridine orange (AO). The effects of various experimental parameters (e.g., dye concentration, particle size, initial pH, contact time and other factors) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 4, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of NR sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo-first-order rate kinetics. The results in this study indicated that kohlrabi peel was an attractive candidate for removing cationic dyes from the dye wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号