首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant parasitic nematodes Helicotylenchus multicinctus, Meloidogyne javanica, Tylenchulus semipenetrans, and Xiphinema index, differing in their host specificity and parasitic habits, were analyzed as to their cuticle surface sialyl, galaclosyl, and/or N-acetylgalactosaminyl residues. The procedure involved the selective oxidation of sialic acid and galactose/N-acetylgal-actosamine residues using periodate and galactose oxidase, respectively, to form reactive aldehyde groups. These functional groups were coupled directly with a new hydrazide-containing compound, the fluorescent reagent lissamine rhodamine-β-alanine hydrazide, or they were utilized to introduce DPN-groups to the nematode cuticle. The distribution of the DNP-tagged glycoconjugates was visualized by treating the nematodes with rabbit anti-DNP antibody and staining with fluorescein isothiocyanate (FITC)-labeled goat antirabbit IgG. Sialo residues were observed along the entire outer body wall of the first three aforementioned nematodes, but there were some differences in reaction among the various life stages within the species. In X. index, sialo residues were sited in the tail and head areas, mainly on the lips, oral opening, amphid apertures and stylet. Galactose oxidase treatments revealed galactose on N-acytylgalactosamine residues on T. sentipenetrans and X. index, but there were no indications that their presence was dependent on the developmental stage. Trypsin, pronase, and neuraminidase pretreatment completely abolished the fluorescence in T. semipenetrans but did not alter the sialo residue binding reaction in H. multicinctus or M. javanica, indicating possible differences in the outer body wall saccharide structure and composition between these nematodes. The existence and nature of sugar residues on the cuticle surface of nematodes could contribute to an understanding of the specific recognition by phytophagous nematodes of their host, and perhaps also of the virus transmission mechanism in those nematodes which serve as vectors.  相似文献   

2.
Haptoglossa is a genus of biflagellate organisms that has been placed in the oomycetes and is characterised by producing unique infective gun cells, which usually infect by physically rupturing the nematode cuticle. Haptoglossa erumpens is a parasite of Bunonema nematodes that produces arcuate infection cells and aplanospores that are discharged following the swelling and rupture of the thallus wall and distended host cuticle. Recent isolations of H. erumpens have revealed that the germinating aplanospores develop into two similar-sized but morphologically distinct infection cells. The uni-nucleate, convexly arcuate, gun cells were observed to fire in response to host nematodes, producing a cylindrical sporidium inside the host body. These gun cells had an apical missile chamber containing a needle with a unique arrangement of investing cones. Unlike previously described gun cells, the tube tail did not wind around the nucleus but continued into the basal vacuole where it terminated. The second type of infection cell was a concavely arcuate, bi-nucleate, cell that had an unusually large and elongate annulus component in the missile chamber. These modified bi-nucleate gun cells were never observed to fire in response to contact with Bunomena nematodes. The patterns of morphological and structural variations in these infection structures in this genus are reviewed in the light of these findings.  相似文献   

3.
Three species of Myzocytium parasitic on nematodes are described as new. In M. papillatum the zoospores encyst directly on the host cuticle before penetration. This species produces smooth, spherical oospores. In M. glutinosporum the biflagellate zoospores do not attack the host directly; after encystment they produce a spherical adhesive bud which allows the spores to adhere to the cuticle of passing nematodes. This species produces echinulate, spherical oospores. In M. anomalum the primary spores are aplanospores. After a dormant phase, and when suitably stimulated, these aplanospores change into biflagellate zoospores and the latter encyst on the host cuticle. No sexual state is known in this species. Persistence is by means of thick-walled, spherical chlamydospores.  相似文献   

4.
Rhodamine and fluoresceine containing hydrazides were synthesized and used for fluorescent labeling of glycoconjugates on cell surface or in solution. The procedure involves the oxidation of the glycoconjugates with sodium metaperiodate or galactose oxidase to form an aldehyde group which reacts with the respective hydrazides. The method was applied for the modification of cell surface sialic acid and galactose residues on thymocytes and nematodes as well as for the labeling of glycoproteins and gangliosides in solution. The many possible application of these highly fluorescent compounds in the study of cell surface events is considered.  相似文献   

5.
McKenzie JD  Grigolava IV 《Biofouling》1996,10(1-3):261-272
Antifouling is a property of the epidermis in echinoderms. There is neither production of biocides that act at any distance from the surface nor is the sloughing rate of the entire surface capable of explaining the observed antifouling capability. As with many invertebrates, the epidermis in echinoderms is overlain by thin surface coats, often termed the cuticle. The outermost coat has attenuated fibrils radiating outwards from the underlying cuticle. As these fibrils are the "real"; surface of the echinoderm, this is the level at which any antifouling defense must operate. It is suggested that their function is primarily antifouling. The cuticle contains chondroitin sulphate proteoglycan molecules and is negatively charged. The cuticle appears to be a highly extended glycocalyx. It is suggested that the primitive function of cellular glycocalyces is to modulate adhesive interactions at the cell or organismal surface.  相似文献   

6.
1. Lipids deposited on the surface or embedded within the cuticle of terrestrial plants and arthropods are primarily responsible for the observed low rates of water loss through the cuticle. 2. These lipids are a mixture of long-chain compounds which include hydrocarbons (saturated, unsaturated, branched), wax esters, free fatty acids, alcohols, ketones, aldehydes, and cyclic compounds. 3. The cuticle of both plants and arthropods is a continuous, non-cellular multilayered membrane which overlies the epidermal cells. 4. In arthropods, horizontal division of the cuticle into layers is clearly visible. In plants, the layers comprising the cuticle are not sharply demarcated. 5. The substance responsible for the structural integrity of the plant cuticle (cutin) is composed of cross-esterified fatty acids; structural integrity in arthropod cuticle is provided by a chitin-protein complex. 6. Cuticular lipids are probably formed near the surface in both plants and arthropods; however, specific sites of synthesis are known for only a few species and little is known about their transport from these sites to the surface. The elaborate pore canal and wax canal system of arthropod cuticle is absent from plants. 7. The physical structure and arrangement of the lipid deposits on the cuticular surface that are so important in controlling water movement depend on both quantity and chemical composition, and are, in turn, specific to each species in relation to its environment. 8. Different lipid components are not equally efficient in reducing transpiration. Maximum waterproofing effectiveness is provided by long-chain, saturated, non-polar molecules containing few methyl branches. 9. Plants and arthropods can, within genetic constraints, alter the composition of their cuticular waxes to improve impermeability when conditions require increased water conservation. 10. None of the models proposed to explain the change in arthropod cuticular permeability which occurs at a species-specific temperature (‘transition temperature’) in many species is supported by the experimental data now available.  相似文献   

7.
This paper describes Excreted-secreted proteins (ES) proteins that were immunolocalised in the cuticle, amphids and subventral glands of second stage juveniles of the two species of potato cyst nematodes (Globodera pallida and Globodera rostochiensis). Monoclonal antibodies reactive with these ES proteins were used in a bioassay to investigate their effect on nematode movement and on their ability to invade potato roots. Antibodies recognising the nematode cuticle surface and the amphids affected nematode movement and delayed nematode penetration of roots. These effects were temporary, since the nematodes were able to recover and infect potato roots. Movement of second stage juveniles treated with the antibodies was impaired for the first 30 min after inoculation: the juveniles remained close to the point of introduction and moved slowly and abnormally. They recovered normal movement after 1–2 h, possibly because the turnover rate of the secreted proteins meant that they were no longer blocked by the monoclonal antibodies. No effect was observed on second stage juveniles treated with an antibody reactive with secretions from the oesophageal glands. Nematodes treated with antibodies reactive with the nematode cuticle surface were notably more affected than those treated with other antibodies; nematodes failed to recover movement when in continuous contact with the antibodies. It is possible that the physical presence of the antibodies on the nematode surface affected their motility. Nematodes treated with antibodies reactive with secretions from the amphids were temporarily unable to move towards potato roots and their exploratory behaviour was greatly affected by the antibody treatment. Whether these antibodies were able to inhibit temporarily the function of the amphids or this effect was due to physical presence of the antibodies blocking the amphidial pore remains to be determined.  相似文献   

8.
Schistosoma mansoni: development of the cercarial glycocalyx   总被引:1,自引:0,他引:1  
The development of the cercarial glycocalyx of Schistosoma mansoni was studied by transmission electron microscopy and immunofluorescence light microscopy employing antibodies raised against extracted and chromatographed glycocalyx. By electron microscopy, cercariae present in the brood chamber of daughter sporocysts were surrounded by an electron-dense granular and fibrillar matrix. This material appeared structurally distinct from the glycocalyx which was coarsely fibrillar and located only on the surface of organisms that had developed a final tegument. The thickness of the glycocalyx apparently increased with the maturation of the tegument, since teguments that had many spines also had the thickest glycocalyx. Immunofluorescent staining of frozen sections of infected snail hepatopancreas showed that glycocalyx antigens were present on the surface of the cercariae and not in the matrix within the brood chamber or in snail tissues. Immunofluorescent staining of isolated larval cercariae showed staining of some but not all parasites with partially elongated tails. These studies suggest that the glycocalyx develops late in cercarial development (late in Stage 6 or in Stage 7 of Cheng and Bier), is made by the cercariae themselves, and is not a product of either the sporocyst wall cells or snail hepatopancreas.  相似文献   

9.
荇菜成熟花蜜腺的形态及其泌蜜过程的超微结构研究   总被引:3,自引:2,他引:1  
荇菜花蜜腺共五枚,黄色,肾形,着生子房基部。它们由分泌表皮和泌蜜组织组成,属结构蜜腺。成熟蜜腺的分泌表皮具明显的角质层和气孔,还具少量短期生活的分泌毛,分泌毛不具明显的角质层。泌蜜组织具较小的胞间隙,胞间连丝发达。成熟蜜腺细胞中不人有丰富的线粒体,内质网,还有大量的质体。  相似文献   

10.
Infective stages of commercially used molluscicidal rhabditide nematodes Phasmarhabditis hermaphrodita contain bacterial symbionts which kill their host by septicaemia. The nematodes feed on the multiplying bacteria and entire host tissue, develop and repeatedly reproduce. Invertebrate cadavers are rapidly (from minutes to hours) removed by scavengers. However nematodes need days to complete their life cycle inside the host.

The post mortem locations of slugs killed by six different treatments (three types of molluscicides, a simulation of unsuccessful predation and two P. hermaphrodita nematode treatments) were compared.

In comparison to other pathogenic states, significantly more slugs killed by the nematodes died within the soil, where the scavenging pressure is weaker than on the soil surface (where most of the slugs died regardless treatment). We suggest that this is an outcome of behavioural manipulation, which prevent the parasites from being predated or scavenged together with their host until the nematodes complete development inside the host cadaver.  相似文献   


11.
The site specificity that avian Eimeria sporozoites and, to a more limited degree, other apicomplexan parasites exhibit for invasion in vivo suggests that specific interactions between the sporozoites and the target host cells may mediate the invasion process. Although sporozoite motility and structural and secreted antigens appear to provide the mechanisms for propelling the sporozoite into the host cell,there is a growing body of evidence that the host cell provides characteristics by which the sporozoites recognise and interact with the host cell as a prelude to invasion. Molecules on the surface of cells in the intestinal epithelium, that act as receptor or recognition sites for sporozoite invasion, may be included among these characteristics. The existence of receptor molecules for invasion by apicomplexan parasites was suggested by in vitro studies in which parasite invasion was inhibited in cultured cells that were treated with a variety of substances designed to selectively alter the host cell membrane. These substance included cationic compounds or molecules, enzymes that cleave specific linkages, protease inhibitors, monoclonal antibodies, etc. More specific evidence for the presence of receptors was provided by the binding of parasite antigens to specific host cell surface molecules.Analyses of host cells have implicated 22, 31, and 37 kDa antigens, surface membrane glycoconjugates,conserved epitopes of host cells and sporozoites, etc., but no treatment that perturbs these putative receptors has completely inhibited invasion of the cells by parasites. Regardless of the mechanism,sporozoites of the avian Eimeria also invade the same specific sites in foreign host birds that they invade in the natural host. Thus, site specificity for invasion may be a response to characteristics of the intestine that are shared by a number of hosts rather than to a unique trait of the natural host. Protective immunity elicited against avian Eimeria species is not manifested in a total blockade of parasite invasion. In fact, the effect of immunity on invasion differs according to the eliciting species and depends upon the area of the intestine that is invaded. Immunity produced against caecal species of avian Eimeria, for example Eimeria tenella and Eimeria adenoeides, inhibits subsequent invasion by homologous or heterologous challenge species, regardless of the area of the intestine that the challenge species invade. Conversely, in birds immunised with upper intestinal species, Eimeria acervulina and Eimeria meleagrimitis, invasion by challenge species is not decreased and often is significantly increased.  相似文献   

12.
Nematodes are responsible for causing severe diseases in plants, humans and other animals. Infection is associated with the release of Excretory/Secretory (ES) proteins into host cytoplasm and interference with the host immune system which make them attractive targets for therapeutic use. The identification of ES proteins through bioinformatics approaches is cost- and time-effective and could be used for screening of potential targets for parasitic diseases for further experimental studies. Here, we identified and functionally annotated 93,949 ES proteins, in the genome of 73 nematodes using integration of various bioinformatics tools. 30.6% of ES proteins were found to be supported at RNA level. The predicted ES proteins, annotated by Gene Ontology terms, domains, metabolic pathways, proteases and enzyme class analysis were enriched in molecular functions of proteases, protease inhibitors, c-type lectin and hydrolases which are strongly associated with typical functions of ES proteins. We identified a total of 452 ES proteins from human and plant parasitic nematodes, homologues to DrugBank-approved targets and C. elegans RNA interference phenotype genes which could represent potential targets for parasite control and provide valuable resource for further experimental studies to understand host-pathogen interactions.  相似文献   

13.
Plant parasitic nematodes have developed the capacity to sense and respond to chemical signals of host origin and the ability to orientate towards plant roots enhances the nematode's chance of survival. Root exudates contain a range of compounds which mediate belowground interactions with pathogenic and beneficial soil organisms. Chemical components of root exudates may deter one organism while attracting another and these compounds alter nematode behaviour and can either attract nematodes to the roots or result in repellence, motility inhibition or even death. In vitro, plant signals present in root exudates, trigger a rapid alteration of the surface cuticle of Meloidogyne incognita and the same changes were also induced by indole-acetic acid (IAA). IAA binds to the chemosensory organs of M. incognito and it is possible that IAA acts as a signal that orientates the nematode on the root surface in the rhizosphere and/or inside the root tissue and thereby promotes nematode infection.  相似文献   

14.
A. Brune 《Molecular ecology》2016,25(13):2964-2966
Mutualistic associations of bacteria and invertebrates are widespread and encompass an enormous diversity on the side of both partners. The advantages gained from the symbiosis favour reciprocal adaptations that increase the stability of the association and can lead to codiversification of symbiont and host. While numerous examples of a strictly vertical transfer of the symbionts from parent to offspring among intracellular associations abound, little is known about the fidelity of the partners in extracellular associations, where symbionts colonize the surface or body cavity of their host. In this issue of Molecular Ecology, Zimmermann et al. ( 2016 ) investigated the evolutionary history of the symbiotic association between a monophyletic clade of sulphur‐oxidizing Gammaproteobacteria and two distantly related lineages of marine worms (nematodes and annelids). The study supports the surprising conclusion that partner fidelity does not necessarily increase with the intimacy of the association. Ectosymbionts on the cuticle of the nematodes seem to be cospeciating with their hosts, whereas endosymbionts housed in the body cavity of the annelids must have originated multiple times, probably by host switching, from ectosymbionts of sympatric nematodes. This excellent case study on the evolutionary history of invertebrate–microbe interactions supports the emerging concept that the co‐evolutionary processes shaping such mutualistic symbioses include both codiversification and ecological fitting.  相似文献   

15.
Trichinella spiralis: specificity of ES antigens from pre-encysted larvae.   总被引:3,自引:0,他引:3  
Excretory/secretory (ES) antigens were obtained by culturing pre-encysted Trichinella spiralis larvae which were recovered from muscles of experimentally infected mice 14-15 days postinfection. Analyses of these antigens (PEL ES) with immunoblotting, SDS-PAGE and Triple Antibody ELISA showed that they yielded a low sensitivity and specificity when tested with antisera against the common nematodes of Chinese pigs. As compared to ES antigens from encysted larvae, PEL ES also contained more low molecular mass proteins.  相似文献   

16.
Protozoan parasites of the genus Leishmania have a glycoconjugatesurface coat (the glycocalyx) that acts as the interface betweenthe parasite and its external environment. The prinicipal componentsof the glycocalyx, the lipophosphoglycans and the glycoinositolphospholipids,have a variety of functions that facilitate parasite survivalin both the extracellular and the intracellular stages of thelife cycle. Recently, a novel hydrophilic Leishmania protein,the Gene B protein, has been identified on the surface of infectiveparasite stages. Attachment to the surface appears to be byassociation between a region of repeated amino acids in thismolecule and components of the glycocalyx. As a consequence,the Gene B protein is exposed on the parasite surface whileother peptides are buried beneath the glycocalyx. The putativefunctions of this unusual molecule are discussed. differentially regulated genes glycoconjugates infective parasites Leishmania surface protein  相似文献   

17.
The carbohydrate sequences of cell surface glycolipids change during differentiation and oncogenic transformation. To detect these structural changes, murine monoclonal antibodies have been produced in many different laboratories. Some of these antibodies are used to distinguish various cell types such as normal and transformed cells, while others are used to analyze developmentally regulated antigens. Recently, the structures of many of these carbohydrate antigens have been determined. The availability of these well-defined monoclonal antibodies will be useful for the study of the regulation and function of glycoconjugates.  相似文献   

18.
Antagonistic factors, broadly identified as antibiosis, competition and natural enemies, impact on entomopathogenic nematodes. Antibiosis can occur through the release of plant chemicals from the roots into the soil, which may adversely affect the host-finding behavior of the infective stage nematode, or the presence of these chemicals in the host insect may negatively affect nematode reproduction. In laboratory studies, intra-specific and inter-specific competition reduces nematode fitness, and inter-specific competition can cause local extinction of a nematode species. For example, after concomitant infection of a host, a steinernematid species usually excludes a heterorhabditid species. The mechanism for the steinernematid superiority has been postulated to be a bacteriocin(s) produced by Xenorhabdus, the symbiotic bacterium of the steinernematid, which prevents Photorhabdus, the symbiotic bacterium of the heterorhabditid, from multiplying. Inter-specific competition between two steinernematid species shows that both can co-exist in a host, but one species will eventually prevail in the environment. By having different foraging strategies, however, both steinermatid species may co-exist in the same habitat. An important issue is whether the introduction of an exotic entomopathogenic nematode species will competitively displace an indigenous nematode species. Although the environmental risks are small, the recommended policy is that the introduction of exotic nematodes be regulated. With other pathogens, entomopathogenic nematodes can out-compete entomopathogenic fungi, but not Bacillus thuringiensis, for the same host individual when both the nematode and entomopathogen are applied simultaneously. The best studied natural enemy is the nematophagous fungus, Hirsutella rhossiliensis, which causes higher mortality in Steinernema glaseri compared with Heterorhabditis bacteriorphora. Differential susceptibility to the fungus may be associated with the retention of the second-stage cuticle by H. bacteriophora. Invertebrate predators including mites and collembolans feed on entomopathogenic nematodes. Although a number of studies have been conducted with antagonists, there is a dearth of field data. We suggest that long-term research plots be established where natural populations of entomopathogenic nematodes occur and include antagonists as a component of such studies.  相似文献   

19.
The surface layers of the cuticle of the infective, first-stage larva of the nematodes Trichinella spiralis and T. spiralis var. pseudospiralis have been studied by means of the freeze-fracturing technique. No obvious differences between the two nematodes were found. A double-layered structure covers the cuticle. Its outermost layer consists of particles embedded in an amorphous matrix; its inner layer is composed of a sheet of fine filaments which may be composed of globular subunits. This unique double layered structure is not like a normal cell membrane in structure. The surface of the cuticle beneath it is relatively smooth except for impressions from the inner surface of the double-layered structure. The cuticle surface did not fracture in the manner of a cell membrane.  相似文献   

20.
昆虫病原线虫感染期幼虫恢复发育的研究进展   总被引:3,自引:0,他引:3  
昆虫病原线虫的感染期幼虫(infective juvenile,IJ)是其一生中唯一具有侵染能力和可自由生活于寄主体外的虫态,一般滞育不取食,体外包裹着已经蜕去的第2龄幼虫的表皮,对外界不良环境的耐受能力强,又称为耐受态幼虫(dauer juvenile,DJ),类似于秀丽隐杆线虫Caenorhabditis elegans的耐受态幼虫。在食物信息的诱导下,感染期幼虫脱鞘,释放出共生细菌,恢复取食并继续发育,这个过程称为感染期幼虫的恢复(IJ recovery)。这个过程是发生在寄生性线虫入侵寄主时的发育过程,对于成功寄生是必要的,在线虫的产业化培养中发挥着重要作用,感染期线虫的恢复率及其发育的同步性直接影响了线虫的产量。本文概述了感染期线虫的恢复发育过程,并对诱导感染期线虫恢复发育的食物信号(food signals)、恢复的影响因素及其检测手段进行了综述,同时讨论了未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号