首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene man5K encoding the mannanase Man5K from Clostridium cellulolyticum was cloned alone or as an operon with the gene cipC1 encoding a truncated scaffoldin (miniCipC1) of the same origin in the solventogenic Clostridium acetobutylicum. The expression of the heterologous gene(s) was under the control of a weakened thiolase promoter Pthl. The recombinant strains of the solventogenic bacterium were both found to secrete active Man5K in the range of milligrams per liter. In the case of the strain expressing only man5K, a large fraction of the recombinant enzyme was truncated and lost the N-terminal dockerin domain, but it remained active towards galactomannan. When man5K was coexpressed with cipC1 in C. acetobutylicum, the recombinant strain secreted almost exclusively full-length mannanase, which bound to the scaffoldin miniCipC1, thus showing that complexation to the scaffoldin stabilized the enzyme. The secreted heterologous complex was found to be functional: it binds to crystalline cellulose via the carbohydrate binding module of the miniscaffoldin, and the complexed mannanase is active towards galactomannan. Taken together, these data show that C. acetobutylicum is a suitable host for the production, assembly, and secretion of heterologous minicellulosomes.  相似文献   

2.
Sequencing of a cellulosome-integrating gene cluster in Acetivibrio cellulolyticus was completed. The cluster contains four tandem scaffoldin genes (scaA, scaB, scaC, and scaD) bounded upstream and downstream, respectively, by a presumed cellobiose phosphorylase and a nucleotide methylase. The sequences and properties of scaA, scaB, and scaC were reported previously, and those of scaD are reported here. The scaD gene encodes an 852-residue polypeptide that includes a signal peptide, three cohesins, and a C-terminal S-layer homology (SLH) module. The calculated molecular weight of the mature ScaD is 88,960; a 67-residue linker segment separates cohesins 1 and 2, and two approximately 30-residue linkers separate cohesin 2 from 3 and cohesin 3 from the SLH module. The presence of an SLH module in ScaD indicates its role as an anchoring protein. The first two ScaD cohesins can be classified as type II, similar to the four cohesins of ScaB. Surprisingly, the third ScaD cohesin belongs to the type I cohesins, like the seven ScaA cohesins. ScaD is the first scaffoldin to be described that contains divergent types of cohesins as integral parts of the polypeptide chain. The recognition properties among selected recombinant cohesins and dockerins from the different scaffoldins of the gene cluster were investigated by affinity blotting. The results indicated that the divergent types of ScaD cohesins also differ in their preference of dockerins. ScaD thus plays a dual role, both as a primary scaffoldin, capable of direct incorporation of a single dockerin-borne enzyme, and as a secondary scaffoldin that anchors the major primary scaffoldin, ScaA and its complement of enzymes to the cell surface.  相似文献   

3.
Cohesin-dockerin interactions orchestrate the assembly of one of nature''s most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at β-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure.  相似文献   

4.
Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature''s most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes.  相似文献   

5.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

6.
Ruminococcus flavefaciens is a vital cellulosome-producing fibrolytic rumen bacterium. The arrangement of the cellulosomal scaffoldin gene cluster ( scaC–scaA–scaB–cttA–scaE ) is conserved in two R. flavefaciens strains (17 and FD-1). Sequence analysis revealed a high mosaic conservation of the intergenic regions in the two strains that contrasted sharply with the divergence of the structural sca gene sequences. Based on the conserved intergenic regions, we designed PCR primers in order to examine the sca gene cluster in additional R. flavefaciens strains (C94, B34b, C1a and JM1). Using these conserved and/or degenerate primers, the scaC, scaA and scaB genes were amplified in all six strains, while the entire sca gene cluster and the proximal genes cttA and scaE were successfully amplified in four of the strains (17, FD-1, C94 and JM1). The sequencing of scaA and scaC genes in all the strains yielded additional insight into the variability of the structural genes with regard to the number and type of cohesin modules contained in a conserved molecular skeleton. Moreover, the scaC gene, being short and variable, appears to be a promising functional phylotyping target for metagenomic population studies of R. flavefaciens in the rumen as a function of the individual host animal.  相似文献   

7.
Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.  相似文献   

8.
The gene man5K encoding the mannanase Man5K from Clostridium cellulolyticum was cloned alone or as an operon with the gene cipC1 encoding a truncated scaffoldin (miniCipC1) of the same origin in the solventogenic Clostridium acetobutylicum. The expression of the heterologous gene(s) was under the control of a weakened thiolase promoter Pthl. The recombinant strains of the solventogenic bacterium were both found to secrete active Man5K in the range of milligrams per liter. In the case of the strain expressing only man5K, a large fraction of the recombinant enzyme was truncated and lost the N-terminal dockerin domain, but it remained active towards galactomannan. When man5K was coexpressed with cipC1 in C. acetobutylicum, the recombinant strain secreted almost exclusively full-length mannanase, which bound to the scaffoldin miniCipC1, thus showing that complexation to the scaffoldin stabilized the enzyme. The secreted heterologous complex was found to be functional: it binds to crystalline cellulose via the carbohydrate binding module of the miniscaffoldin, and the complexed mannanase is active towards galactomannan. Taken together, these data show that C. acetobutylicum is a suitable host for the production, assembly, and secretion of heterologous minicellulosomes.  相似文献   

9.
Progress towards understanding the molecular basis of cellulolysis by Clostridium cellulolyticm was obtained through the study of the first cellulolysis defective mutant strain, namely cipCMut1. In this mutant, a 2 659 bp insertion element, disrupts the cipC gene at the sequence encoding the seventh cohesin of the scaffoldin CipC. cipC is the first gene in a large 'cel' gene cluster, encoding several enzymatic subunits of the cellulosomes, including the processive cellulase Cel48F, which is the major component. Physiological and biochemical studies showed that the mutant strain was affected in cellulosome synthesis and severely impaired in its ability to degrade crystalline cellulose. It produced small amounts of a truncated CipC protein (P120), which had functional cohesin domains and assembled complexes which did not contain any of the enzymes encoded by genes of the 'cel' cluster. The mutant cellulolytic system was mainly composed of three proteins designated P98, P105 and P125. Their N-termini did not match any of the known cellulase sequences from C. cellulolyticum. A large amount of entire CipC produced in the cipCMut1 strain by trans-complementation with plasmid pSOScipC did not restore the cellulolytic phenotype, in spite of the assembly of a larger amount of complexes. The complexes produced in the mutant and complemented strains contained at least 12 different dockerin-containing proteins encoded by genes located outside of the 'cel' cluster. The disturbances observed in the mutant and trans-complemented strains were the result of a strong polar effect resulting from the cipC gene disruption. In conclusion, this study provided genetic evidence that the cellulases encoded by the genes located in the 'cel' cluster are essential for the building of cellulosomes efficient in crystalline cellulose degradation.  相似文献   

10.
A new gene, designated scaC and encoding a protein carrying a single cohesin, was identified in the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 as part of a gene cluster that also codes for the cellulosome structural components ScaA and ScaB. Phylogenetic analysis showed that the sequence of the ScaC cohesin is distinct from the sequences of other cohesins, including the sequences of R. flavefaciens ScaA and ScaB. The scaC gene product also includes at its C terminus a dockerin module that closely resembles those found in R. flavefaciens enzymes that bind to the cohesins of the primary ScaA scaffoldin. The putative cohesin domain and the C-terminal dockerin module were cloned and overexpressed in Escherichia coli as His(6)-tagged products (ScaC-Coh and ScaC-Doc, respectively). Affinity probing of protein extracts of R. flavefaciens 17 separated in one-dimensional and two-dimensional gels with recombinant cohesins from ScaC and ScaA revealed that two distinct subsets of native proteins interact with ScaC-Coh and ScaA-Coh. Furthermore, ScaC-Coh failed to interact with the recombinant dockerin module from the enzyme EndB that is recognized by ScaA cohesins. On the other hand, ScaC-Doc was shown to interact specifically with the recombinant cohesin domain from ScaA, and the ScaA-Coh probe was shown to interact with a native 29-kDa protein spot identified as ScaC by matrix-assisted laser desorption ionization-time of flight mass spectrometry. These results suggest that ScaC plays the role of an adaptor scaffoldin that is bound to ScaA via the ScaC dockerin module, which, via the distinctive ScaC cohesin, expands the range of proteins that can bind to the ScaA-based enzyme complex.  相似文献   

11.
12.
《PloS one》2009,4(5)

Background

Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared.

Methodology/Principal Findings

The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid).

Conclusion/Significance

These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.  相似文献   

13.
Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17°C and by the ability to grow at temperatures from 48 to 53°C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster.  相似文献   

14.
Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.  相似文献   

15.
16.
Aggregatibacter actinomycetemcomitans is an important pathogen related to aggressively progressive periodontal breakdown in adolescents and adults. The species can be divided into six serotypes (a–f) according to their surface carbohydrate antigens. Recently, a new serotype g of A. actinomycetemcomitans was proposed. The aim of the present study was to sequence the gene cluster associated with the biosynthesis of the serotype g-specific polysaccharide antigen and develop serotype-specific primers for PCR assay to identify serotype g strains of A. actinomycetemcomitans. The serotype-specific polysaccharide (SSPS) gene cluster of the NUM-Aa 4039 strain contained 21 genes in 21,842-bp nucleotides. The similarity of the SSPS gene cluster sequence was 96.7 % compared with that of the serotype e strain. Seventeen serotype g genes showed more than 90 % homology both in nucleotide and amino acids to the serotype e strain. Three additional genes with 1,579 bp in NUM-Aa 4039 were inserted into the corresponding ORF13 of the serotype e strain. The serotype g-specific primers were designed from the insertion region of NUM-Aa 4039. Serotypes of the a–f strains were not amplified by serotype-specific g primers; only NUM-Aa 4039 showed an amplicon band. The NUM-Aa 4039 strain was three genes in the SSPS gene cluster different from those of serotype e strain. The specific primers derived from these different regions are useful for identification and distribution of serotype g strain among A. actinomycetemcomitans from clinical samples.  相似文献   

17.
The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT). In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3) or missing (bcbik1) but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa) that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin) and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.  相似文献   

18.
Vineyards of southern France and northern Italy are affected by the flavescence dorée (FD) phytoplasma, a quarantine pathogen transmitted by the leafhopper of Nearctic origin Scaphoideus titanus. To better trace propagation of FD strains and identify possible passage between the vineyard and wild plant compartments, molecular typing of phytoplasma strains was applied. The sequences of the two genetic loci map and uvrB-degV, along with the sequence of the secY gene, were determined among a collection of FD and FD-related phytoplasmas infecting grapevine, alder, elm, blackberry, and Spanish broom in Europe. Sequence comparisons and phylogenetic analyses consistently indicated the existence of three FD phytoplasma strain clusters. Strain cluster FD1 (comprising isolate FD70) displayed low variability and represented 17% of the disease cases in the French vineyard, with a higher incidence of the cases in southwestern France. Strain cluster FD2 (comprising isolates FD92 and FD-D) displayed no variability and was detected both in France (83% of the cases) and in Italy, whereas the more-variable strain cluster FD3 (comprising isolate FD-C) was detected only in Italy. The clonal property of FD2 and its wide distribution are consistent with diffusion through propagation of infected-plant material. German Palatinate grapevine yellows phytoplasmas (PGY) appeared variable and were often related to some of the alder phytoplasmas (AldY) detected in Italy and France. Finally, phylogenetic analyses concluded that FD, PGY, and AldY were members of the same phylogenetic subclade, which may have originated in Europe.  相似文献   

19.
Degradation of cellulose is of major interest in the quest for alternative sources of renewable energy, for its positive effects on environment and ecology, and for use in advanced biotechnological applications. Due to its microcrystalline organization, celluose is extremely difficult to degrade, although numerous microbes have evolved that produce the appropriate enzymes. The most efficient known natural cellulolytic system is produced by anaerobic bacteria, such as C. thermocellum, that possess a multi-enzymatic complex termed the cellulosome. Our laboratory has devised and developed the designer cellulosome concept, which consists of chimaeric scaffoldins for controlled incorporation of recombinant polysaccharide-degrading enzymes. Recently, we reported the creation of a combinatorial library of four cellulosomal modules comprising a basic chimaeric scaffoldin, i.e., a CBM and 3 divergent cohesin modules. Here, we employed selected members of this library to determine whether the position of defined cellulolytic enzymes is important for optimized degradation of a microcrystalline cellulosic substrate. For this purpose, 10 chimaeric scaffoldins were used for incorporation of three recombinant Thermobifida fusca enzymes: the processive endoglucanase Cel9A, endoglucanase Cel5A and exoglucanase Cel48A. In addition, we examined whether the characteristic properties of the T. fusca enzymes as designer cellulosome components are unique to this bacterium by replacing them with parallel enzymes from Clostridium thermocellum. The results support the contention that for a given set of cellulosomal enzymes, their relative position within a scaffoldin can be critical for optimal degradation of microcrystaline cellulosic substrates.  相似文献   

20.
Burkholderia pseudomallei is the etiologic agent of melioidosis. Many disease manifestations are associated with melioidosis, and the mechanisms causing this variation are unknown; genomic differences among strains offer one explanation. We compared the genome sequences of two strains of B. pseudomallei: the original reference strain K96243 from Thailand and strain MSHR305 from Australia. We identified a variable homologous region between the two strains. This region was previously identified in comparisons of the genome of B. pseudomallei strain K96243 with the genome of strain E264 from the closely related B. thailandensis. In that comparison, K96243 was shown to possess a horizontally acquired Yersinia-like fimbrial (YLF) gene cluster. Here, we show that the homologous genomic region in B. pseudomallei strain 305 is similar to that previously identified in B. thailandensis strain E264. We have named this region in B. pseudomallei strain 305 the B. thailandensis-like flagellum and chemotaxis (BTFC) gene cluster. We screened for these different genomic components across additional genome sequences and 571 B. pseudomallei DNA extracts obtained from regions of endemicity. These alternate genomic states define two distinct groups within B. pseudomallei: all strains contained either the BTFC gene cluster (group BTFC) or the YLF gene cluster (group YLF). These two groups have distinct geographic distributions: group BTFC is dominant in Australia, and group YLF is dominant in Thailand and elsewhere. In addition, clinical isolates are more likely to belong to group YLF, whereas environmental isolates are more likely to belong to group BTFC. These groups should be further characterized in an animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号