首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GH3 cells can be used effectively to study the in vitro mechanism of action of GRF. In these cells, there is a time and concentration-dependent release of cAMP into the medium. Rat hypothalamic GRF, (rGRF) is 7 to 10 fold more active than human hypothalamic GRF (hGRF). VIP, a peptide which is structurally homologous to GRF, stimulates cAMP efflux in GH3 cells, with a higher affinity than hGRF or rGRF. We propose that in contradistinction to the normal rat pituitary, the stimulation of cAMP release by GRF in GH3 cells occurs via activation of VIP-preferring receptors and that GRF (rGRF in particular) behaves as a partial VIP agonist.  相似文献   

2.
We established in culture two colony clones of rMTC 44-2 cells, rMTC 44-2B and 44-2C which secrete substantially greater quantities of neurotensin (NT) than the parent cell line. We describe here the effects of the synthetic glucocorticoid, dexamethasone, on NT and cAMP release. Medium and intracellular levels of NT and cAMP were measured by specific RIAs. Long-term release experiments were performed in Dulbecco's Modified Eagle's Medium supplemented with 15% horse serum (DMEM). Short-term release experiments were performed in Krebs-Ringer-bicarbonate-glucose buffer (KRBG) supplemented with 1.0 mm Ca2+. Dexamethasone stimulated NT release and increased intracellular NT levels. The ED50 values for stimulation of NT release following 24 or 48 h incubation of cells in DMEM with dexamethasone were 5 · 10?9 and 7 · 10?9 M, respectively. Dexamethasone markedly enhanced intracellular levels of NT in rMTC 44-2 cells while it decreased cell growth. Cells pretreated with dexamethasone for 48 h released greater amounts of NT in response to Ca2+ (1.0 mM) with or without K+ (50 mM) or NE (10?6 M) following a 10 min incubation with these substances in KRBG. This experimental paradigm was also used to measure the efflux of cAMP following a brief (10 min) exposure of cells to NE. We conclude that the rMTC 44-2B and 44-2C cells are useful tools for studying the effects of dexamethasone on the regulation of cell growth, as well as the secretion of NT and cAMP.  相似文献   

3.
Regulation of mast cell histamine release by neurotensin   总被引:1,自引:0,他引:1  
Neurotensin (NT), a neuropeptide found both centrally and peripherally, stimulated release of histamine from rat peritoneal mast cells in a dose-dependent manner. Release was evident by 10 nM and reached a plateau of 15-20% total cellular histamine by 10(-7)-10(-6) M NT. Optimal conditions for stimulation occurred at pH 6.5-7.5, 37 degrees C and at calcium concentrations of less than 1 mM. Release was complete within 2 minutes of peptide addition. Studies of histamine release by NT analogues indicted that the C-terminus is the biologically active portion of the molecule in this system, as is true of all other systems responsive to NT (1). D-Trp11-NT, which acts as a NT antagonist in several peripheral NT-sensitive tissues (2,3), also inhibited NT action on mast cells. Manipulations involving Ca2+ availability suggest that the mechanism of NT stimulation may involve use of intracellular Ca2+ to a greater extent than extracellular Ca2+. Lowering the extracellular Ca2+ concentration or blocking influx of extracellular Ca2+ with lanthanum (La3+), had little effect on NT-induced release, whereas Ca2+ depletion by treatment with ethylenediaminetetracetic acid (EDTA) or blockade of intracellular Ca2+ mobilization by N,N-(diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), inhibited the response to NT. Increasing cellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), by treatment with 8-bromo-cAMP or stimulation with prostaglandin E2 (PGE2) in the presence of isobutylmethylxanthine (IBMX), served to reduce histamine release by NT, indicating that cAMP may play a role in NT stimulation.  相似文献   

4.
The effects of rat growth hormone releasing factor (rGRF) on somatostatin (SRIF) secretion, cyclic nucleotide production and phosphatidylinositol metabolism were investigated in the median eminence (ME), using an in vitro system. Medium was discarded and replaced by medium containing various concentrations of rGRF or rGRF plus epinephrine (E, 6 x 10(-7) M). rGRF had no effect on basal or E-stimulated release of cAMP. In the same experiments rGRF markedly stimulated SRIF release. These results suggested that cAMP is not involved in the stimulatory effect of GRF on SRIF release. However, GRF significantly stimulated release of both SRIF and cGMP in a dose-related manner. Maximal stimulation was observed at 10(-10) M GRF (p less than 0.005) which also produces maximal SRIF release. 2'0-monobutyrylguanosine 3'5' cyclic phosphate (mbcGMP, 10(-11) to 10(-10) M) stimulated SRIF release from ME fragments (p less than 0.001 at 10(-10) M) whereas the control, sodium butyrate (10(-6) M), had no effect. GRF caused significant elevation of 30.6% in the concentration of labelled inositol phosphates [( 3H]-IPs) in the ME. These data indicate that GRF stimulation of SRIF release is accompanied by increased cGMP production and phosphatidyl-inositol (PI) metabolism but does not alter cAMP production. Because mbcGMP can directly stimulate SRIF release, we suggest that GRF causes a receptor-mediated increase in the metabolism of phosphatidylinositol and cGMP formation. These actions therefore may be among the early metabolic events in the mechanism of GRF-stimulated SRIF release from the ME.  相似文献   

5.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

6.
The release of GH induced by purified hypothalamic GRF or native or synthetic tumor-derived GRF is antagonized by the presence of CoCl2; it is simulated by 8Br .cAMP, IBMX, cholera toxin, forskolin, with identical maximal effects (Emax). Somatocrinin (GRF) stimulates the efflux of cAMP by the pituitary cells in parallel to the release of GH. Addition of either 8Br .cAMP, IBMX, cholera toxin or forskolin to a maximally stimulating dose of GRF does not increase the response which remains GRF-Emax. In contradistinction with these results PGE2 releases GH with a dose-response curve different from that of GRF, and the combination of PGE2 + GRF produces an Emax far greater than that due to either agonist alone; showing a true additivity. The name somatocrinin is proposed to replace the acronym GRF.  相似文献   

7.
8.
Synthetic human pancreatic growth hormone-releasing factor (hpGRF-44) was infused intravenously at a constant rate of 2.5 micrograms/min for 180 minutes in 3 normal boys of short stature. Plasma GH levels reached a peak at 60-120 min with a mean value (+/- SEM) of 69.1 +/- 14.3 ng/ml, and then, declined gradually in spite of continuous hpGRF-44 infusion up to 180 minutes. Similarly, constant infusion of hpGRF-44 at a rate of 2.5 micrograms/min in 5 normal but short boys for 90 minutes, together with an iv bolus injection of hpGRF-44 (2 micrograms/kg) administered at 0 and 90 minutes, elicited a prompt rise in plasma GH 15-30 minutes after the first bolus but no significant elevation of GH was observed after the second bolus. In contrast, when two iv bolus injections of hpGRF-44 (2 micrograms/kg) were given in 4 normal boys with short stature at 0 and 90 minutes, respectively, significant elevation of plasma GH was found after each bolus. These results suggest that under constant infusion of GRF the pituitary experiences a down-regulation after the initial peak of GH response, possibly due to desensitization to GRF.  相似文献   

9.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

10.
Calcium ions have been shown to play a mojor regulatory role in the release of various hormones from a wide variety of endocrine organs. More recently, in vitro evidence suggests that a calcium-binding protein, calmodulin, is also involved in the release of many hormones. So we examined the effects of several types of calmodulin antagonists on TSH-stimulated thyroid hormone release in vitro. Mouse thyroid lobes (one thyro-tracheal unit/tube) were incubated in Krebs-Ringer bicarbonate buffer at 37 degrees C for 4h. Free thyroxine (fT4) released in the incubation medium, thyroidal cAMP and calmodulin content were measured by RIA. TSH (5 mU/ml) and dibutyryl cAMP (DBC) (200 micrograms/ml) caused a 2-4 fold increase in thyroidal release of fT4. The stimulatory effects of TSH on fT4 release were significantly inhibited by trifluoprazine and prenylamine lactate at the concentration of 5 X 10(-5) M. More specific calmodulin antagonists, W-7 and W-13, were also shown to inhibit TSH stimulation of fT4 release at the concentration of 5 X 10(-5) M. In contrast, TSH stimulation of fT4 release was not depressed by non-specific antagonists, W-5 or W-12, at the same concentration as 5 X 10(-5) M. Further, W-13 also markedly inhibited DBC-stimulated fT4 release. Neither TSH nor PGI2 altered the thyroidal calmodulin content, dissociating with a marked increase in the cAMP concentration. These results suggest that calmodulin plays an important role in TSH-stimulated thyroid hormone release and further that this mechanism exists, at least in part, at the site subsequent to the generation of cAMP.  相似文献   

11.
The effects of forskolin and cholera toxin on the regulation of cAMP release were studied in a neurotensin-secreting rat C-cell line. The interaction of these agents with norepinephrine, a potent neurotensin secretagogue, was also investigated. Forskolin stimulated cAMP release 10(2)-10(3) fold while it increased neurotensin release 2-3 fold. Cholera toxin caused a 10(2)-10(3) fold increase in cAMP release and had no effect on neurotensin release. We conclude that the 44-2 C-cells provide a new model for studying the regulation of the concomitant (via forskolin) or independent (via cholera toxin) secretion of cyclic AMP and/or neurotensin.  相似文献   

12.
Calcitonin gene-related peptides I and II (CGRP I and II) were found to stimulate cAMP levels by approximately 4-6 fold in human nonpigmented ciliary epithelial cells with half-maximal effective concentrations of 20 x 10(-10) and 3 x 10(-10) M, respectively. Prior exposure of cells to 6 x 10(-7) M phorbol 12-myristate, 13-acetate for 15 min resulted in a 40-50% inhibition of CGRP II-dependent cAMP stimulation. Phorbol didecanoate and dioctanoylglycerol also effectively inhibited, whereas 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C, had no effect. Staurosporine, a protein kinase C inhibitor, blocked the inhibition of cAMP formation by phorbol esters. cAMP stimulation by forskolin or cholera toxin was not inhibited by phorbol esters, suggesting that neither a Gs protein nor adenylyl cyclase is the site of inhibition by protein kinase C. These data therefore suggest that CGRP receptors are required for inhibition of adenylate cyclase by protein kinase C.  相似文献   

13.
J Simard  G Lefèvre  F Labrie 《Peptides》1987,8(2):199-205
We have investigated the effect of prior exposure to somatostatin (SRIF) alone or in combination with growth hormone-releasing factor (GRF) on the subsequent cyclic AMP and GH responses to GRF in rat anterior pituitary cells in primary culture. The maximal 4.5-fold stimulation of GH release induced by a 3-hr incubation with GRF is reduced by 60% following a prior 3-hr exposure to 30 nM GRF. A 3-hr preincubation with GRF in the presence of 30 nM SRIF doubles spontaneous GH release while the maximal amount of GH released during a subsequent 3-hr exposure to GRF is similar to that measured in cells pretreated with control medium, thus completely preventing the loss of GH responsiveness induced by prior exposure to GRF. The prevention by SRIF of the desensitizing action of GRF on GH release is not observed on the cyclic AMP response which remains almost completely inhibited in GRF-pretreated cells. Similar protective effects are obtained when SRIF is incubated with prostaglandin E2 (PGE2), thus completely preventing the desensitizing action of PGE2 on GH release. Prior treatment with pertussis toxin completely prevents the protective action of SRIF on GH responsiveness. Pretreatment with GRF + SRIF increases by 85 and 60% the maximal amount of GH release induced by cholera toxin and 8-bromoadenosine 3',5'-monophosphate, respectively. The post-SRIF rebound effect on GH release occurs mainly during the first 30 min following withdrawal of the tetradecapeptide. The present data demonstrate that simultaneous preincubation with SRIF and GRF prevents the marked inhibition of GH release during subsequent exposure to GRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
It is known that the human exocrine pancreas responds to secretin stimulation more than does VIP, a structurally related peptide. We looked for the receptors for those polypeptides in a human pancreatic cancer cell line grown in culture and in nude mice. By analysing the cAMP responses and the 125I-VIP binding we found VIP receptors with a KD of 1.5 10(-9) M. Secretin stimulates the adenylate cyclase through the VIP receptor sites with a KD of 1.7. 10(-6) M. We noted also that during cell proliferation in culture there was about a 5 fold increase of the cAMP response to VIP.  相似文献   

15.
This study was undertaken (i) to establish a relationship between cyclic AMP (cAMP) production and the degree of LH and FSH stimulation; (ii) to determine the effects of various gonadotrophins on follicular formation of cAMP; and (iii) to identify the precise intrafollicular site of cAMP formation. The formation of cAMP increased rapidly in follicles exposed to LH. Maximum concentrations were reached after 90 min and were maintained for 180 min. Extracellular release of cAMP increased steadily throughout the 180-min experimental period. Tissue levels of cAMP increased proportionally and significantly when LH concentrations in the medium were increased from 0 to 200 mi.u. ml-1. Tissue levels of cAMP were significantly increased by HCG, prostaglandin E-2 and noradrenaline, but not by prolactin, prostaglandin F-2alpha, serotonin or melatonin. Cyclic AMP formation occurred predominantly in the thecal compartment; the membrana granulosa contributed less than 3% of the total amount of cAMP formed after gonadotrophic stimulation. A significant amount of cAMP from the thecal cells was released into the extracellular compartment and appeared to pass into the granulosa cells.  相似文献   

16.
Rat GH gene expression is known to be stimulated by several factors, including thyroid hormone and GRF. This effect of GRF appears to be mediated by cAMP resulting from activation of adenylate cyclase by the peptide. The elements of the rat GH gene important for thyroid hormone stimulation and cell-specific expression have been previously mapped using gene transfection techniques. Cell-specific expression of the gene is mediated by two cell-specific elements located from -137 to -107 and from -95 to -65. Sequences mediating thyroid hormone stimulation are thought to be located between -208 and -160. In this study, using three different methods to elevate cAMP levels in cells [forskolin, a direct activator of the adenylate cyclase catalytic subunit; 8-(4-chlorophenylthio)cAMP, a nonmetabolizable cAMP analog; and isobutylmethylxanthine, a phosphodiesterase inhibitor], we show that 5'-flanking DNA of the rat GH gene can mediate stimulation by cAMP (10- to 20-fold). The cAMP-responsive region was mapped to sequences between -104 and +11, which contains the proximal cell-specific element (-95/-65) important for cell-specific expression. Either the -97/-65 or the -104/-47 region of the gene, cloned upstream of a heterologous promoter, conferred only minimal or no activation by cAMP. This suggests that these sequences are not the direct target of cAMP action or that they are insufficient alone to mediate the cAMP response. The cAMP regulatory element (TGACGTCA) is not found between - 104 and +11, and cAMP activation does not appear to act via putative AP-2 elements, since phorbol esters did not stimulate expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Neurotensin (NT), a gut peptide, plays important roles in gastrointestinal secretion, inflammation, and growth of normal and neoplastic tissues. cAMP regulates the secretion of hormones via its effector proteins protein kinase A (PKA) or Epac (exchange protein directly activated by cAMP). The small GTPase Rap1 can be activated by both PKA and Epac; however, the role of Rap1 in hormone secretion is unknown. Here, using the BON human endocrine cell line, we found that forskolin (FSK)-stimulated NT secretion was reduced by inhibition of Rap1 expression and activity. FSK-stimulated NT secretion was enhanced by overexpression of either wild-type or constitutively active Rap1. Epac activators and wild-type Epac enhanced NT release and Rap1 activity. In contrast, overexpression of a cAMP binding mutant, EpacR279E, decreased NT release and Rap1 activity. PKA activation increased NT release and Rap1 activity. FSK-stimulated NT release was reduced by PKA inhibition and the dominant negative Rap1N17. NT secretion, stimulated by Epac activation, was reduced by PKA inhibition; NT release, stimulated by PKA activation, was enhanced by wild-type Epac but reduced by the mutant EpacR279E. Finally, prostaglandin E2 (PGE2), a physiological agent that increases cAMP, stimulated NT secretion via cAMP/PKA/Rap1. Importantly, we demonstrate that PKA and Epac mediate the cAMP-induced NT secretion synergistically by converging at the common downstream target protein Rap1. Moreover, PGE2, a potent mediator of inflammation and associated with colorectal carcinogenesis, stimulates NT release suggesting a possible link between PGE2 and NT on intestinal inflammatory disorders and colorectal cancers.  相似文献   

18.
Parietal cells are a major source of gastric mucosal prostaglandins in various species. We examined cholinergic stimulation of prostaglandin E2 (PGE2) release from human parietal cells; using activators of the protein kinase C we attempted to get an indirect insight into cellular mechanisms which control PGE2 release. Gastric mucosal specimens were obtained at surgery and the cells were dispersed by collagenase and pronase E. Parietal cells were enriched to 65-80% by a Percoll gradient, and were incubated for 30 min. PGE2 release into the medium (radioimmunoassay) was 74-126 pg/10(6) cells/30 min under basal conditions and was 2.6-fold increased by carbachol (10(-5) and 10(-4) M). Similarly, PGE2 release was stimulated by phospholipase C (20-200 mU/ml, 364% above basal), 1-oleoyl-2-acetyl-sn-glycerol (10(-9)-10(-5) M, 229%), 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-9)-10(-5) M, 283%) and calcium ionophore A23187 (10(-7)-10(-5) M, 219%). Simultaneous presence of A23187 and TPA synergistically induced stimulation which was slightly higher than the sum of the individual responses. N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide W-7, a putative calmodulin antagonist, inhibited TPA-induced PGE2 release at concentrations regarded specific for blocking calmodulin (IC50 = 1.5 X 0(-6) M). We conclude that in human parietal cells PGE2 is released upon cholinergic stimulation and that phospholipase C and protein kinase C are involved in the control of PGE2 release. We speculate that calmodulin might interact with a protein phosphorylated by protein kinase C to cause PGE2 release.  相似文献   

19.
Our previous study on teratocarcinoma cells suggested the role of human parathyroid hormone (hPTH) in early development of the placenta. The purpose of this study was to evaluate the possible role of hPTH on the functions of first trimester trophoblast cells. Adenylate cyclase activity in crude membranes from first trimester human placental villous tissue is stimulated 2-fold by hPTH (1-34) (10(-6) mol.l-1) from 265 +/- 32 to 532 +/- 80 pmol of cAMP/mg protein/15 min. A similar stimulation of adenylate cyclase is observed in human term placental villous tissue but not in 3 different choriocarcinoma cell lines. In order to evaluate the possible role of hPTH on the functions of first trimester human trophoblast cells, these cells were isolated by dispase and cultured (2 x 10(5) cells per plate) in DMEM supplemented with 20% fetal calf serum with or without 100 ng/ml of epidermal growth factor (EGF), for 4 d. On d 2 of culture, hPTH (10(-7) mol.l-1) stimulates cAMP production of these cells from 0.52 +/- 0.2 to 2.58 +/- 0.57 pmol.h-1 per 10(6) cells (mean +/- SEM). As compared to control (30 ng/ml), the output of hCG is increased by 1.5- (NS), 2- (P less than 0.01) and 3- (P less than 0.01) fold by EGF, hPTH, and hPTH added with EGF, respectively. Dibutyryl cAMP (10(-3) mol.l-1) increased hCG secretion by 3-fold (P less than 0.05). EGF and hPTH added separately or together significantly stimulated (P less than 0.01) the secretion of free alpha subunit 2-fold from 35 ng/ml to 70 ng/ml. In contrast, hPTH and EGF added separately did not change the secretion of free beta hCG. However, added together, they significantly increased (P less than 0.01) the secretion of free beta hCG after 48 h of culture, maximal stimulation (2.5 fold) being observed at d 4 of culture. In conclusion, human trophoblast cells are target cells for hPTH. hPTH acts in association with EGF in promoting expression of endocrine activity of these cells, such as hCG secretion. Trophoblast cells provide a model for the study of the cooperative effect between a peptide hormone and a growth factor in the regulation of endocrine function.  相似文献   

20.
U937 cells can be induced to express receptor for complement 5a (C5aR) by sequential 2 day treatments of cells with dihydroxyvitamin D-3 (1,25(OH)2D3) followed by prostaglandin E2. We asked whether the action of prostaglandin E2 to cause maximal C5aR expression required only activation of the cAMP-dependent protein kinase (PKA). Prostaglandin E2 dose dependently activated PKA in control and 1,25(OH)2D3 treated cells; by 4 h the PKA did not respond to further prostaglandin E2 challenge. We hypothesized that prostaglandin E2 actions transduced via PKA should be complete by 4 h; i.e., C5aR induction should be equivalent in cells treated with prostaglandin E2 for 4 h and for 2 days. All cells were treated for the first 2 days with 1,25(OH)2D3 and the second 2 days with prostaglandin E2 or cAMP analogs. C5aR number was measured after 4 days total culture. 4 h pulse treatments with agents were given at the end of the 1,25(OH)2D3 treatment. Cells exposed to a 4 h pulse of prostaglandin E2 had only 68.2 +/- 4.4% the amount of C5aR seen in cells continuously exposed to prostaglandin E2. Continuous culture with a cAMP analog pair (50 microM each of 8-thiomethyl-cAMP + N6-benzoyl-cAMP), which caused a 41.7% +/- 10.8% increase PKA activation above basal, resulted in only 51% +/- 16% of the C5aR numbers seen in cells cultured for 2 days with prostaglandin E2, where PKA remained at basal activity. We therefore concluded that C5aR expression caused by prostaglandin E2 could not be ascribed entirely to duration or degree of activation of cAMP-dependent signalling pathways. We investigated the possibility that the calcium sensitive protein kinase C was involved. Cytoplasmic protein kinase C was increased 154% +/- 14% above control in cells treated with sequential 2 days treatments of 1,25(OH)2D3 and prostaglandin E2. A 147% +/- 2% increase in membrane associated protein kinase C was also seen 10 min after phorbol myristate acetate stimulation in the above treatment group. Finally, phorbol myristate acetate augmented the C5aR induction caused by cAMP analog. We propose that the mechanism of prostaglandin E2 synergism with 1,25(OH)2D3 in causing C5aR induction in U937 cells includes signal transduction not only by the cAMP cascade, but also via protein kinase C modulated pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号