首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
There is a close relationship between perception of umami, which has become recognized as the fifth taste, and the human physical condition. We have developed a clinical test for umami taste sensitivity using a filter paper disc with a range of six monosodium glutamate (MSG) concentrations. We recruited 28 patients with taste disorders (45–78 years) and 184 controls with no taste disorders (102 young [18–25 years] and 82 older [65–89 years] participants). Filter paper discs (5 mm dia.) were soaked in aqueous MSG solutions (1, 5, 10, 50, 100 and 200 mM), then placed on three oral sites innervated by different taste nerves. The lowest concentration participants correctly identified was defined as the recognition threshold (RT) for MSG. This test showed good reproducibility for inter- and intra-observer variability. We concluded that: (1) The RT of healthy controls differed at measurement sites innervated by different taste nerves; that is, the RT of the anterior tongue was higher than that of either the posterior tongue or the soft palate in both young and older individuals. (2) No significant difference in RT was found between young adults and older individuals at any measurement site. (3) The RT of patients with taste disorders was higher before treatment than that of the healthy controls at any measurement site. (4) The RT after treatment in these patients improved to the same level as that of the healthy controls. (5) The cutoff values of RT, showing the highest diagnostic accuracy (true positives + true negatives), were 200 mM MSG for AT and 50 mM MSG for PT and SP. The diagnostic accuracy at these cutoff values was 0.92, 0.87 and 0.86 for AT, PT and SP, respectively. Consequently, this umami taste sensitivity test is useful for discriminating between normal and abnormal umami taste sensations.  相似文献   

2.
Decoding human speech requires both perception and integration of brief, successive auditory stimuli that enter the central nervous system as well as the allocation of attention to language-relevant signals. This study assesses the role of attention on processing rapid transient stimuli in adults and children. Cortical responses (EEG/ERPs), specifically mismatch negativity (MMN) responses, to paired tones (standard 100–100Hz; deviant 100–300Hz) separated by a 300, 70 or 10ms silent gap (ISI) were recorded under Ignore and Attend conditions in 21 adults and 23 children (6–11 years old). In adults, an attention-related enhancement was found for all rate conditions and laterality effects (L>R) were observed. In children, 2 auditory discrimination-related peaks were identified from the difference wave (deviant-standard): an early peak (eMMN) at about 100–300ms indexing sensory processing, and a later peak (LDN), at about 400–600ms, thought to reflect reorientation to the deviant stimuli or “second-look” processing. Results revealed differing patterns of activation and attention modulation for the eMMN in children as compared to the MMN in adults: The eMMN had a more frontal topography as compared to adults and attention played a significantly greater role in childrens’ rate processing. The pattern of findings for the LDN was consistent with hypothesized mechanisms related to further processing of complex stimuli. The differences between eMMN and LDN observed here support the premise that separate cognitive processes and mechanisms underlie these ERP peaks. These findings are the first to show that the eMMN and LDN differ under different temporal and attentional conditions, and that a more complete understanding of children’s responses to rapid successive auditory stimulation requires an examination of both peaks.  相似文献   

3.

Background

EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.

Methodology

In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5–7 Hz), alpha1 (8–10), alpha2 (10–12 Hz), beta1 (13–20), beta2 (20–30 Hz), and gamma (30–40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.

Principal Findings

We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and—with one exception—beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.

Conclusions

We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.  相似文献   

4.

Background

Intra-individual variability in reaction time (RT IIV) is considered to be an index of central nervous system functioning. Such variability is elevated in neurodegenerative diseases or following traumatic brain injury. It has also been suggested to increase with age in healthy ageing.

Objectives

To investigate and quantify age differences in RT IIV in healthy ageing; to examine the effect of different tasks and procedures; to compare raw and mean-adjusted measures of RT IIV.

Data Sources

Four electronic databases: PsycINFO, Medline, Web of Science and EMBASE, and hand searching of reference lists of relevant studies.

Study Eligibility

English language journal articles, books or book chapters, containing quantitative empirical data on simple and/or choice RT IIV. Samples had to include younger (under 60 years) and older (60 years and above) human adults.

Study Appraisal and Synthesis

Studies were evaluated in terms of sample representativeness and data treatment. Relevant data were extracted, using a specially-designed form, from the published report or obtained directly from the study authors. Age-group differences in raw and RT-mean-adjusted measures of simple and choice RT IIV were quantified using random effects meta-analyses.

Results

Older adults (60+ years) had greater RT IIV than younger (20–39) and middle-aged (40–59) adults. Age effects were larger in choice RT tasks than in simple RT tasks. For all measures of RT IIV, effect sizes were larger for the comparisons between older and younger adults than between older and middle-aged adults, indicating that the age-related increases in RT IIV are not limited to old age. Effect sizes were also larger for raw than for RT-mean-adjusted RT IIV measures.

Conclusions

RT IIV is greater among older adults. Some (but not all) of the age-related increases in RT IIV are accounted for by the increased RT means.  相似文献   

5.
Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented ‘cued’ and ‘non-cued’ conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18–25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation).  相似文献   

6.
Social interaction starts with perception of other persons. One of the first steps in perception is processing of basic information such as spatial frequencies (SF), which represent details and global information. However, although behavioural perception of SF is well investigated, the developmental trajectory of the temporal characteristics of SF processing is not yet well understood. The speed of processing of this basic visual information is crucial, as it determines the speed and possibly accuracy of subsequent visual and social processes. The current study investigated developmental changes in the temporal characteristics of selective processing of high SF (HSF; details) versus low SF (LSF; global). To this end, brain activity was measured using EEG in 108 children aged 3–15 years, while HSF or LSF grating stimuli were presented. Interest was in the temporal characteristics of brain activity related to LSF and HSF processing, specifically at early (N80) or later (P1 or N2) peaks in brain activity. Analyses revealed that from 7–8 years onwards HSF but not LSF stimuli evoked an N80 peak. In younger children, aged 3–8 years, the visual manipulation mainly affected the visual N2 peak. Selective processing of HSF versus LSF thus occurs at a rather late time-point (N2 peak) in young children. Although behavioural research previously showed that 3–6 year-olds can perceive detailed information, the current results point out that selective processing of HSF versus LSF is still delayed in these children. The delayed processing in younger children could impede the use of LSF and HSF for emotional face processing. Thus, the current study is a starting point for understanding changes in basic visual processing which underlie social development.  相似文献   

7.
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.  相似文献   

8.
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: ‘slow–regular–social’, ‘fast–regular–social’ and ‘fast–irregular–asocial’. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms.  相似文献   

9.

Introduction

Data on the prevalence of nasopharyngeal carriage of S.pneumoniae in all age groups are important to help predict the impact of introducing pneumococcal conjugate vaccines (PCV) into routine infant immunization, given the important indirect effect of the vaccine. Yet most carriage studies are limited to children under five years of age. We here explore the association between carriage prevalence and serotype distribution in children aged ≥5 years and in adults compared to children.

Methods

We conducted a systematic review of studies providing carriage estimates across age groups in healthy populations not previously exposed to PCV, using MEDLINE and Embase. We used Bayesian linear meta-regression models to predict the overall carriage prevalence as well as the prevalence and distribution of vaccine and nonvaccine type (VT and NVT) serotypes in older age groups as a function of that in <5 y olds.

Results

Twenty-nine studies compromising of 20,391 individuals were included in the analysis. In all studies nasopharyngeal carriage decreased with increasing age. We found a strong positive linear association between the carriage prevalence in pre-school childen (<5 y) and both that in school aged children (5–17 y olds) and in adults. The proportion of VT serotypes isolated from carriers was consistently lower in older age groups and on average about 73% that of children <5 y among 5–17 y olds and adults respectively. We provide a prediction model to infer the carriage prevalence and serotype distribution in 5–17 y olds and adults as a function of that in children <5 years of age.

Conclusion

Such predictions are helpful for assessing the potential population-wide effects of vaccination programmes, e.g. via transmission models, and thus assist in the design of future pneumococcal conjugate vaccination strategies.  相似文献   

10.
Cognitive control is integral to the ability to attend to a relevant task whilst suppressing distracting information or inhibiting prepotent responses. The current study examined the development of these two subprocesses by examining electrophysiological indices elicited during each process. Thirteen 18 year-old adults and thirteen children aged 8–11 years (mean = 9.77 years) completed a hybrid Go/Nogo flanker task while continuous EEG data were recorded. The N2 topography for both response inhibition and interference suppression changed with increasing age. The neural activation associated with response inhibition became increasingly frontally distributed with age, and showed decreases of both amplitude and peak latency from childhood to adulthood, possibly due to reduced cognitive demands and myelination respectively occurring during this period. Interestingly, a significant N2 effect was apparent in adults, but not observed in children during trials requiring interference suppression. This could be due to more diffuse activation in children, which would require smaller levels of activation over a larger region of the brain than is reported in adults. Overall, these results provide evidence of distinct maturational processes occurring throughout late childhood and adolescence, highlighting the separability of response inhibition and interference suppression.  相似文献   

11.
In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance.  相似文献   

12.
Although the functional brain network involved in reading for adults and children is now well documented, a critical lack of knowledge still exists about the structural development of these brain areas. To provide a better overview of the structural dynamics of the brain that sustain reading acquisition, we acquired anatomical MRI brain images from 55 children that were divided into two groups: one prior to the formal learning of reading (n = 33, 5–6 years old) and the second a few years after formal learning (n = 22, 9–10 years old). Reading performances were collected based on the “Alouette-R” test, a standardized test for reading text in French. Voxel-based morphometry analysis of gray matter showed that only the right insula volume was different between the two groups. Moreover, the reading group showed that the volumes of the left fusiform gyrus (corresponding to the well-known visual word form area, VWFA), the anterior part of the left inferior occipital gyrus and the left thalamus were significantly modulated by reading performance. This study reinforces the crucial role of the Visual Word Form Area in reading and correlation analyses performed between ROIs volumes suggesting that the VWFA is fully connected with the traditional left-hemispheric language brain network.  相似文献   

13.
Human immunodeficiency virus (HIV) infected adults are at a higher risk of pneumococcal colonisation and disease, even while receiving antiretroviral therapy (ART). To help evaluate potential indirect effects of vaccination of HIV-infected adults, we assessed whether HIV-infected adults disproportionately contribute to household transmission of pneumococci. We constructed a hidden Markov model to capture the dynamics of pneumococcal carriage acquisition and clearance observed during a longitudinal household-based nasopharyngeal swabbing study, while accounting for sample misclassifications. Households were followed-up twice weekly for approximately 10 months each year during a three-year study period for nasopharyngeal carriage detection via real-time PCR. We estimated the effect of participant’s age, HIV status, presence of a HIV-infected adult within the household and other covariates on pneumococcal acquisition and clearance probabilities. Of 1,684 individuals enrolled, 279 (16.6%) were younger children (<5 years-old) of whom 4 (1.5%) were HIV-infected and 726 (43.1%) were adults (≥18 years-old) of whom 214 (30.4%) were HIV-infected, most (173, 81.2%) with high CD4+ count. The observed range of pneumococcal carriage prevalence across visits was substantially higher in younger children (56.9–80.5%) than older children (5–17 years-old) (31.7–50.0%) or adults (11.5–23.5%). We estimate that 14.4% (95% Confidence Interval [CI]: 13.7–15.0) of pneumococcal-negative swabs were false negatives. Daily carriage acquisition probabilities among HIV-uninfected younger children were similar in households with and without HIV-infected adults (hazard ratio: 0.95, 95%CI: 0.91–1.01). Longer average carriage duration (11.4 days, 95%CI: 10.2–12.8 vs 6.0 days, 95%CI: 5.6–6.3) and higher median carriage density (622 genome equivalents per millilitre, 95%CI: 507–714 vs 389, 95%CI: 311.1–435.5) were estimated in HIV-infected vs HIV-uninfected adults. The use of ART and antibiotics substantially reduced carriage duration in all age groups, and acquisition rates increased with household size. Although South African HIV-infected adults on ART have longer carriage duration and density than their HIV-uninfected counterparts, they show similar patterns of pneumococcal acquisition and onward transmission.  相似文献   

14.

Background

Numerous serologic tests are available for the diagnosis of H. pylori infection in children. Common designs of antibody-based detection tests are ELISA and Western Blot (WB). For developing countries with limited laboratory resources and access, ELISA would be the preferred method because of its simplicity, lower cost and speed. Although in adults ELISA has proven to be highly accurate in diagnosing H. pylori infection; in children, it has shown variable accuracy.

Methods/Findings

We conducted a systematic review and meta-analysis to assess the accuracy of antibody-based detection tests for the diagnosis of H. pylori infection in children. Selection criteria included participation of at least 30 children and the use of a gold standard for H. pylori diagnosis. In a comprehensive search we identified 68 studies. Subgroup analyses were carried out by technique, immunoglobulin class, and source of test (commercial and in-house). The results demonstrated: 1) WB tests showed high overall performance, sensitivity 91.3% (95% CI, 88.9–93.3), specificity 89% (95% CI, 85.7–91.9), LR+ 8.2 (95% CI, 5.1–13.3), LR− 0.06 (95% CI, 0.02–0.16), DOR 158.8 (95% CI, 57.8–435.8); 2) ELISA-IgG assays showed low sensitivity 79.2% (95% CI, 77.3–81.0) and high specificity (92.4%, 95% CI, 91.6–93.3); 3) ELISA commercial tests varied widely in performance (test for heterogeneity p<0.0001); and 4) In-house ELISA with whole-cell antigen tests showed the highest overall performance: sensitivity 94% (95% CI, 90.2–96.7), specificity 96.4% (95% CI, 94.2–97.9), LR+ 19.9 (95% CI, 7.9–49.8), LR− 0.08 (95% CI, 0.04–0.15) DOR 292.8 (95% CI, 101.8–841.7).

Conclusions/Significance

WB test and in-house ELISA with whole-cell antigen tests are the most reliable tests for the diagnosis of H. pylori infection in children. Antigens obtained from local strains of the community could partially explain the good overall accuracy of the in-house ELISA. Because of its cost and technical demands, in-house ELISA might be more suitable for use in developing countries.  相似文献   

15.

Objective

Type 2 diabetes mellitus (DM) accelerates brain aging and cognitive decline. Complex interactions between hyperglycemia, glycemic variability and brain aging remain unresolved. This study investigated the relationship between glycemic variability at multiple time scales, brain volumes and cognition in type 2 DM.

Research Design and Methods

Forty-three older adults with and 26 without type 2 DM completed 72-hour continuous glucose monitoring, cognitive tests and anatomical MRI. We described a new analysis of continuous glucose monitoring, termed Multi-Scale glycemic variability (Multi-Scale GV), to examine glycemic variability at multiple time scales. Specifically, Ensemble Empirical Mode Decomposition was used to identify five unique ultradian glycemic variability cycles (GVC1–5) that modulate serum glucose with periods ranging from 0.5–12 hrs.

Results

Type 2 DM subjects demonstrated greater variability in GVC3–5 (period 2.0–12 hrs) than controls (P<0.0001), during the day as well as during the night. Multi-Scale GV was related to conventional markers of glycemic variability (e.g. standard deviation and mean glycemic excursions), but demonstrated greater sensitivity and specificity to conventional markers, and was associated with worse long-term glycemic control (e.g. fasting glucose and HbA1c). Across all subjects, those with greater glycemic variability within higher frequency cycles (GVC1–3; 0.5–2.0 hrs) had less gray matter within the limbic system and temporo-parietal lobes (e.g. cingulum, insular, hippocampus), and exhibited worse cognitive performance. Specifically within those with type 2 DM, greater glycemic variability in GVC2–3 was associated with worse learning and memory scores. Greater variability in GVC5 was associated with longer DM duration and more depression. These relationships were independent of HbA1c and hypoglycemic episodes.

Conclusions

Type 2 DM is associated with dysregulation of glycemic variability over multiple scales of time. These time-scale-dependent glycemic fluctuations might contribute to brain atrophy and cognitive outcomes within this vulnerable population.  相似文献   

16.
Sleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027–0.073 Hz; Slow-5: 0.01–0.027 Hz; and Typical band: 0.01–0.08 Hz) in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL), bilateral orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.  相似文献   

17.

Background:

Heart rate and heart rate variability, markers of cardiac autonomic function, have been linked with cardiovascular disease. We investigated whether heart rate and heart rate variability are associated with functional status in older adults, independent of cardiovascular disease.

Methods:

We obtained data from the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). A total of 5042 participants were included in the present study, and mean follow-up was 3.2 years. Heart rate and heart rate variability were derived from baseline 10-second electrocardiograms. Heart rate variability was defined as the standard deviation of normal-to-normal RR intervals (SDNN). Functional status in basic (ADL) and instrumental (IADL) activities of daily living was measured using Barthel and Lawton scales, at baseline and during follow-up.

Results:

The mean age of the study population was 75.3 years. At baseline, higher heart rate was associated with worse ADL and IADL, and lower SDNN was related to worse IADL (all p values < 0.05). Participants in the highest tertile of heart rate (range 71–117 beats/min) had a 1.79-fold (95% confidence interval [CI] 1.45–2.22) and 1.35-fold (95% CI 1.12–1.63) higher risk of decline in ADL and IADL, respectively (p for trend < 0.001 and 0.001, respectively). Participants in the lowest tertile of SDNN (range 1.70–13.30 ms) had 1.21-fold (95% CI 1.00–1.46) and 1.25-fold (95% CI 1.05–1.48) higher risk of decline in ADL and IADL, respectively (both p for trends < 0.05). All associations were independent of sex, medications, cardiovascular risk factors and comorbidities.

Interpretation:

Higher resting heart rate and lower heart rate variability were associated with worse functional status and with higher risk of future functional decline in older adults, independent of cardiovascular disease. This study provides insight into the role of cardiac autonomic function in the development of functional decline.Elevated heart rate and reduced heart rate variability — the beat-to-beat variation in heart rate intervals — both reflect an altered balance of the autonomic nervous system tone characterized by increased sympathetic and/or decreased parasympathetic activity.13 Sympathetic overactivity has been linked to a procoagulant state and also to risk factors for atherosclerosis, including metabolic syndrome, obesity and subclinical inflammation.24 Moreover, increased heart rate is related to atherosclerosis, not only as an epiphenomenon of sympathetic overactivity, but also through hemodynamic mechanisms, such as high pulsatile shear stress, which leads to endothelial dysfunction.5Atherosclerosis has been linked to increased risk of functional decline in older people via cardiovascular events.6 As the world population is aging, the burden of functional disability is expected to increase.6 It has been hypothesized that heart rate and heart rate variability are markers of frailty, an increased vulnerability to stressors and functional decline.7 However, the direct link between these 2 parameters and risk of functional decline has not been fully established, and it is uncertain whether this association is independent of cardiovascular comorbidities.In this study, we examined whether heart rate and heart rate variability were cross-sectionally and longitudinally associated with functional status in older adults at high risk of cardiovascular disease, independent of cardiovascular risk factors and comorbidities.  相似文献   

18.

Background

There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV) may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6–8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history.

Methods and Findings

We conducted a randomized controlled trial of 2009–10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1) and A(H3N2) particularly in children 9–17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6–8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6–8 y of age regardless of vaccination history.

Conclusions

Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.  相似文献   

19.
Morphine is a widely used opioid analgesic, which shows large differences in clinical response in children, even when aiming for equivalent plasma drug concentrations. Age-dependent brain disposition of morphine could contribute to this variability, as developmental increase in blood-brain barrier (BBB) P-glycoprotein (Pgp) expression has been reported. In addition, age-related pharmacodynamics might also explain the variability in effect. To assess the influence of these processes on morphine effectiveness, a multi-compartment brain physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) model was developed in R (Version 3.6.2). Active Pgp-mediated morphine transport was measured in MDCKII-Pgp cells grown on transwell filters and translated by an in vitro-in vivo extrapolation approach, which included developmental Pgp expression. Passive BBB permeability of morphine and its active metabolite morphine-6-glucuronide (M6G) and their pharmacodynamic parameters were derived from experiments reported in literature. Model simulations after single dose morphine were compared with measured and published concentrations of morphine and M6G in plasma, brain extracellular fluid (ECF) and cerebrospinal fluid (CSF), as well as published drug responses in children (1 day– 16 years) and adults. Visual predictive checks indicated acceptable overlays between simulated and measured morphine and M6G concentration-time profiles and prediction errors were between 1 and -1. Incorporation of active Pgp-mediated BBB transport into the PB-PK/PD model resulted in a 1.3-fold reduced brain exposure in adults, indicating only a modest contribution on brain disposition. Analgesic effect-time profiles could be described reasonably well for older children and adults, but were largely underpredicted for neonates. In summary, an age-appropriate morphine PB-PK/PD model was developed for the prediction of brain pharmacokinetics and analgesic effects. In the neonatal population, pharmacodynamic characteristics, but not brain drug disposition, appear to be altered compared to adults and older children, which may explain the reported differences in analgesic effect.  相似文献   

20.

Background

The challenge of diagnosing smear-negative pulmonary TB (tuberculosis) in people living with HIV justifies the use of instruments other than the smear test for diagnosing the disease. Considering the clinical-radiological similarities of TB amongst HIV-infected adults and children, the proposal of this study was to assess the accuracy of a scoring system used to diagnose smear-negative pulmonary TB in children and adolescents, in HIV-infected adults suspected of having smear-negative pulmonary TB.

Methods

A Phase III validation study aiming to assess the diagnostic accuracy of a scoring system for diagnosing smear-negative pulmonary TB in HIV-infected adults. The study assessed sensitivity, specificity, positive and negative likelihood ratios, and positive and negative predictive values of the scoring system. Three versions of the scoring system were tested.

Results

From a cohort of 2,382 (HIV-infected adults), 1276 were investigated and 128 were diagnosed with pulmonary TB. Variables associated with the diagnosis of TB were: coughing, weight loss, fever, malnutrition, chest X-ray, and positive tuberculin test. The best diagnostic performance occurred with the scoring system with new scores, with sensitivity = 81.2% (95%-CI 74.5% –88%), specificity = 78% (75.6% –80.4%), PPV = 29.2% (24.5% –33.9%) and NPV = 97.4% (96.4% –98.4%), LR+ = 3.7 (3.4–4.0) and LR− = 0.24 (0.2–0.4).

Conclusion

The proposed scoring system (with new scores) presented a good capacity for discriminating patients who did not have pulmonary TB, in the studied population. Further studies are necessary in order to validate it, thus permitting the assessment of its use in diagnosing smear-negative pulmonary TB in HIV-infected adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号