首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas the beta-lactam acylases are traditionally used for the hydrolytic processing of penicillin G and cephalosporin C, new and mutated acylases can be used for the hydrolysis of alternative fermentation products as well as for the synthesis of semisynthetic beta-lactam antibiotics. Three-dimensional structural analyses and site-directed mutagenesis studies have increased the understanding of the catalytic mechanism of these enzymes. The yield of hydrolysis and synthesis has been greatly improved by process design, including immobilization of the enzyme and the use of alternative reaction media. Significant advances have also been made in the resolution of racemic mixtures by means of stereoselective acylation/hydrolysis using beta-lactam acylases.  相似文献   

2.
The intracellular low-molecular-weight thiols present in five gram-positive Streptomyces species and one Flavobacterium species were analyzed by high-performance liquid chromatography after fluorescence labeling with monobromobimane. Bacteria were chosen to include penicillin and cephalosporin beta-lactam producers and nonproducers. No significant amount of glutathione was found in any of the streptomycetes. Major intracellular thiols in all strains examined were cysteine, coenzyme A, sulfide, thiosulfate, and an unknown thiol designated U17. Those streptomycetes that make beta-lactam antibiotics also produce significant amounts of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), a key intermediate in their biosynthesis. In Streptomyces clavuligerus, a potent producer of beta-lactams, the level of ACV was low during the early phase of growth and increased rapidly toward the end of exponential growth, paralleling that of antibiotic production. These and other observations indicate that ACV does not function as a protective thiol in streptomycetes. U17 may have this role since it was the major thiol in all streptomycetes and appeared to occur at levels about 10-fold higher than those of the other thiols measured, including ACV. Purification and amino acid analysis of U17 indicated that it contains cysteine and an unusual amine that is not one of the common amino acids. This thiol is identical to an unknown thiol found previously in Micrococcus roseus and Streptomyces griseus. A high level of ergothioneine was found in Streptomyces lactamdurans, and several unidentified thiols were detected in this and other streptomycetes.  相似文献   

3.
Significant advances have been made in the structure-based engineering of enzymes useful for beta-lactam antibiotic production. Structure-based engineering of penicillin G acylase and cephalosporin acylase has resulted in improved enzymes for use in enzymatic production processes. The structures of many other enzymes that could be used in the production of beta-lactam antibiotics, such as enzymes from the beta-lactam biosynthetic pathway and beta-lactam antibiotic-converting enzymes, have been determined. The interest in these structures suggests that the future may see an even more extensive use of rationally engineered biocatalysts in antibiotic production than today.  相似文献   

4.
Beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition. Lactivicin (LTV; 1) contains separate cycloserine and gamma-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria.  相似文献   

5.
刘佳佳  刘钢 《微生物学报》2016,56(3):461-470
头孢菌素C由丝状真菌顶头孢霉产生,属于β-内酰胺类抗生素。其经改造后的7-氨基头孢烷酸是头孢类抗生素的重要中间体。头孢类抗生素在国内外抗生素市场中占有巨大的份额,是临床上的主要抗感染药物。随着分子生物学的发展,头孢菌素C的生物合成途径已基本阐明。为提高头孢菌素C的产量和降低生产成本,越来越多的研究者开始关注其较为精细、复杂的调控机制。本文重点对头孢菌素C生物合成及其调控机制的最新进展进行了简述,希望为今后头孢菌素C生产菌株的菌种改造和传统产业的升级换代提供一定的借鉴。  相似文献   

6.
The cephalosporin beta-lactamase was purified from a strain of Proteus morganii that showed resistance to beta-lactam antibiotics and produced the enzyme constitutively. The purified enzyme preparation gave a single protein band on polyacrylamide gel electrophoresis and consisted of a single polypeptide of molecular weight 38,000 to 40,000 from gel filtration of Sephadex G-100 and sodium dodecyl sulfate-acrylamide gel electrophoresis, its isoelectric point being pH 7.2 No cysteine residue was found in its amino acid composition. The specific activity was 190 mumol/min per mg of the purified enzyme protein for the hydrolysis of cephaloridine, the optimal pH was about 8.5 and the optimal temperature was 50 degrees C. Antibodies against the purified beta-lactamase inhibited not only the enzyme activity of the purified preparation, but also the enzyme activity of all of the other strains of P. morganii so far tested, regardless of whether the modes of their production were inducible or constitutive. None of the beta-lactamases produced by beta-lactam antibiotic-resistant strains of other species of Proteus was affected at all by the antibodies, thus showing that the purified cephalosporin beta-lactamase was of the species-specific type. The enzymological properties of the preparation have been compared with those of beta-lactamases derived from other gram-negative enteric bacteria.  相似文献   

7.
beta-Lactamases, enzymes that catalyse the hydrolysis of the beta-lactam ring in beta-lactam antibiotics, are divided into three classes, A, B and C, on the basis of the structures so far determined. There are relatively few effective inhibitors of class C beta-lactamases. A beta-lactam sulphone with a hydroxybenzyl side chain, namely (1'R,6R)-6-(1'-hydroxy)benzylpenicillanic acid SS-dioxide (I), has now been studied. The sulphone is a good mechanism-based inhibitor of class C beta-lactamases. At pH8, the inhibition of a Pseudomonas beta-lactamase is irreversible, and proceeds at a rate that is about one-tenth the rate of concurrent hydrolysis. The labelled enzyme has enhanced u.v. absorption and is probably an enamine. At a lower pH, however, inhibition is transitory.  相似文献   

8.
Clinically and economically, penicillins and cephalosporins are the most important class of the beta-lactam antibiotics. They are produced by a wide variety of microorganisms including numerous species of Streptomyces, some unicellular bacteria and several filamentous fungi. A key step common to their biosynthetic pathways is the conversion of a linear, cysteine-containing tripeptide to a bicyclic beta-lactam antibiotic by isopenicillin N synthase. Recent successes in the cloning and expression of isopenicillin N synthase genes now permit production of a plentiful supply of this enzyme, which may be used for structural and mechanistic studies, or for biotechnological applications in the creation of novel beta-lactam compounds from peptide analogues. New ideas concerning the evolution and prevalence of the penicillin and cephalosporin biosynthetic genes have emerged from studies of isopenicillin N synthase genes.  相似文献   

9.
Antibiotic resistance to clinically employed beta-lactam antibiotics currently poses a very serious threat to the clinical community. The origin of this resistance is the expression of several beta-lactamases that effectively hydrolyze the amide bond in beta-lactam compounds. These beta-lactamases are classified into two major categories: serine beta-lactamases and metallo-beta-lactamases. The metalloenzymes use one or two zinc ions in their active sites to catalyze the hydrolysis of all classes of beta-lactam antibiotics, including carbapenems. As there is no clinically useful inhibitor for the metallo-beta-lactamases, it is important to understand the mechanism by which these enzymes catalyze the hydrolysis of antibiotics. In this regard, the development of synthetic analogues will be very useful in understanding the mechanism of action of metallo-beta-lactamases. This review highlights some important contributions made by various research groups in the area of synthetic analogues of metallo-beta-lactamases, with major emphasis on the role of dinuclear Zn(II) complexes in the hydrolysis of beta-lactam antibiotics.  相似文献   

10.
Staphylococci, a leading cause of infections worldwide, have devised two mechanisms for resistance to beta-lactam antibiotics. One is production of beta-lactamases, hydrolytic resistance enzymes, and the other is the expression of penicillin-binding protein 2a (PBP 2a), which is not susceptible to inhibition by beta-lactam antibiotics. The beta-lactam sensor-transducer (BlaR), an integral membrane protein, binds beta-lactam antibiotics on the cell surface and transduces the information to the cytoplasm, where gene expression is derepressed for both beta-lactamase and penicillin-binding protein 2a. The gene for the sensor domain of the sensor-transducer protein (BlaR(S)) of Staphylococcus aureus was cloned, and the protein was purified to homogeneity. It is shown that beta-lactam antibiotics covalently modify the BlaR(S) protein. The protein was shown to contain the unusual carboxylated lysine that activates the active site serine residue for acylation by the beta-lactam antibiotics. The details of the kinetics of interactions of the BlaR(S) protein with a series of beta-lactam antibiotics were investigated. The protein undergoes acylation by beta-lactam antibiotics with microscopic rate constants (k(2)) of 1-26 s(-1), yet the deacylation process was essentially irreversible within one cell cycle. The protein undergoes a significant conformational change on binding with beta-lactam antibiotics, a process that commences at the preacylation complex and reaches its full effect after protein acylation has been accomplished. These conformational changes are likely to be central to the signal transduction events when the organism is exposed to the beta-lactam antibiotic.  相似文献   

11.
Zinc, which is required for the hydrolysis of cephalosporins by a crude enzyme from Bacillus cereus 569, also increased the stability of this activity during storage. A loss in activity of the zinc-activated enzyme which occurred on prolonged hydrolysis of cephalosporin C was not restored by further addition of zinc. The thiol reagents N-ethyl maleimide (NEM), iodoacetic acid (IAA), CdCl(2), and p-chloromercuribenzoate, all at 10(-3)m, and iodine at 1.6 x 10(-3)n prevent zinc activation of the "cephalosporinase" activity. However, NEM and IAA have minimal or no demonstrable inhibitory effect if the enzyme is first treated with zinc. This suggests that zinc is linked to the apoenzyme by a thiol group. Activation by zinc is only partially prevented by NEM if the crude enzyme is pretreated with nickel, which alone causes negligible activation of the apoenzyme. The order of affinities of these metals for the apparent thiol group is thus Hg(++), Cd(++) > Zn(++) > Ni(++). The "cephalosporinase" inhibition by Hg(++) was reversible with dithiothreitol. These metals and thiol reagents do not decrease the ability of the crude enzyme to hydrolyze benzylpenicillin, which is consistent with the report that purified "penicillinase" from B. cereus contains no cysteine residue. This suggests that the beta-lactamases of B. cereus that hydrolyze penicillin and cephalosporins differ from each other by at least one amino acid (cysteine).  相似文献   

12.
The production of semi-synthetic beta-lactam antibiotics such as Amoxicillin may be performed enzymatically using penicillin acylase under mild conditions. However, the thermodynamically favored hydrolysis of the antibiotic product and the acyl donor substrate needs to be minimized to use the kinetically controlled route. The addition of cosolvents such as ethylene glycol and methanol (the two best solvents identified so far for semi-synthetic beta-lactam antibiotics) can achieve this to some degree, but these additives also produce enzyme inhibition and deactivation. In this study, we compared ethylene glycol and methanol under various substrate conditions. Methanol gave a better synthesis to hydrolysis ratio, although its deactivating effects adversely affected production at lower cosolvent concentrations than ethylene glycol. This effect and its dependence on substrate concentration was further modeled and optimized. A few targets of optimization such as Amoxicllin level, the synthesis to hydrolysis ratio, or a combination, were employed. While maximum levels of Amoxicillin synthesis were achievable only at high substrate concentrations, improvements derived from cosolvents were most significant at low substrate concentrations.  相似文献   

13.
The industrial production of beta-lactam antibiotics by fermentation over the past 50 years is one of the outstanding examples of biotechnology. Today, the beta-lactam antibiotics, particularly penicillins and cephalosporins, represent the world's major biotechnology products with worldwide dosage form sales of approximately 15 billion US dollars or approximately 65% of the total world market for antibiotics. Over the past five decades, major improvements in the productivity of the producer organisms, Penicillium chrysogenum and Acremonium chrysogenum (syn. Cephalosporium acremonium) and improved fermentation technology have culminated in enhanced productivity and substantial cost reduction. Major fermentation producers are now estimated to record harvest titers of 40-50 g/l for penicillin and 20-25 g/l for cephalosporin C. Recovery yields for penicillin G or penicillin V are now >90%. Chemical and enzymatic hydrolysis process technology for 6-aminopenicillanic acid or 7-aminocephalosporanic acid is also highly efficient (approximately 80-90%) with new enzyme technology leading to major cost reductions over the past decade. Europe remains the dominant manufacturing area for both penicillins and cephalosporins. However, due to ever increasing labor, energy and raw material costs, more bulk manufacturing is moving to the Far East, with China, Korea and India becoming major production countries with dosage form filling becoming more dominant in Puerto Rico and in Ireland.  相似文献   

14.
Lack of knowledge of the exact chemical structure of cephalosporin antigenic determinants has hindered clinical interpretation of adverse reactions to these drugs and delayed understanding of the mechanisms involved in the specific recognition and binding of IgE molecules to these antigenic determinants. We further resolve the relationship between structure and activity of proposed antigenic chemicals, including the rational design and synthesis of these haptenic structures. Comparative RAST inhibition studies of the synthesized molecules revealed that they were recognized by IgE antibodies induced by cephalosporin antibiotics. Thus, these data indicate that recognition is mainly directed to the acyl side chain and to the beta-lactam fragment that remains linked to the carrier protein in the cephalosporin conjugation course.  相似文献   

15.
16.
Bacterial resistance to beta-lactam antibiotics is a serious problem limiting current clinical therapy. The most common form of resistance is the production of beta-lactamases that inactivate beta-lactam antibiotics. Toho-1 is an extended-spectrum beta-lactamase that has acquired efficient activity not only to penicillins but also to cephalosporins including the expanded-spectrum cephalosporins that were developed to be stable in former beta-lactamases. We present the acyl-intermediate structures of Toho-1 in complex with cefotaxime (expanded-spectrum cephalosporin), cephalothin (non-expanded-spectrum cephalosporin), and benzylpenicillin at 1.8-, 2.0-, and 2.1-A resolutions, respectively. These structures reveal distinct features that can explain the ability of Toho-1 to hydrolyze expanded-spectrum cephalosporins. First, the Omega-loop of Toho-1 is displaced to avoid the steric contacts with the bulky side chain of cefotaxime. Second, the conserved residues Asn(104) and Asp(240) form unique interactions with the bulky side chain of cefotaxime to fix it tightly. Finally, the unique interaction between the conserved Ser(237) and cephalosporins probably helps to bring the beta-lactam carbonyl group to the suitable position in the oxyanion hole, thus increasing the cephalosporinase activity.  相似文献   

17.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

18.
Stopped-flow tryptophan fluorescence under single turnover and pseudo-first-order conditions has been used to investigate the kinetic mechanism of beta-lactam hydrolysis by the Stenotrophomonas maltophilia L1 metallo-beta-lactamase. For the cephalosporin substrates nitrocefin and cefaclor and the carbapenem meropenem, a substantial quench of fluorescence is observed on association of substrate with enzyme. We have assigned this to a rearrangement event subsequent to formation of an initial collision complex. For the colorimetric compound nitrocefin, decay of this dark inter- mediate represents the overall rate-determining step for the reaction and is equivalent to decay of a previously observed state in which the beta-lactam amide bond has already been cleaved. For both cefaclor and meropenem, the rate-determining step for hydrolysis is loss of a second, less quenched state, in which, however, the beta-lactam amide bond remains intact. We suggest, therefore, that the mechanism of hydrolysis of nitrocefin by binuclear metallo-beta-lactamases may be atypical and that cleavage of the beta-lactam amide bond is the rate-determining step for breakdown of the majority of beta-lactam substrates by the L1 enzyme.  相似文献   

19.
One strategy developed by bacteria to resist the action of beta-lactam antibiotics is the expression of metallo-beta-lactamases. CphA from Aeromonas hydrophila is a member of a clinically important subclass of metallo-beta-lactamases that have only one zinc ion in their active site and for which no structure is available. The crystal structures of wild-type CphA and its N220G mutant show the structural features of the active site of this enzyme, which is modeled specifically for carbapenem hydrolysis. The structure of CphA after reaction with a carbapenem substrate, biapenem, reveals that the enzyme traps a reaction intermediate in the active site. These three X-ray structures have allowed us to propose how the enzyme recognizes carbapenems and suggest a mechanistic pathway for hydrolysis of the beta-lactam. This will be relevant for the design of metallo-beta-lactamase inhibitors as well as of antibiotics that escape their hydrolytic activity.  相似文献   

20.
1. Pseudomonas pyocyanea N.C.T.C. 8203 produces a beta-lactamase that is inducible by high concentrations of benzylpenicillin or cephalosporin C. Methicillin appeared to be a relatively poor inducer, but this could be attributed in part to its ability to mask the enzyme produced. Much of the enzyme is normally cell-bound. 2. No evidence was obtained that the crude enzyme preparation consisted of more than one beta-lactamase and the preparation appeared to contain no significant amount of benzylpenicillin amidase or of an acetyl esterase. 3. The maximum rate of hydrolysis of cephalosporin C and several other derivatives of 7-aminocephalosporanic acid by the crude enzyme was more than five times that of benzylpenicillin. Methicillin, cloxacillin, 6-aminopenicillanic acid and 7-aminocephalosporanic acid were resistant to hydrolysis, and methicillin and cloxacillin were powerful competitive inhibitors of the action of the enzyme on easily hydrolysable substrates. 4. Cephalosporin C, cephalothin and cephaloridine yielded 2 equiv. of acid/mole on enzymic hydrolysis, and deacetylcephalorsporin C yielded 1 equiv./mole. Evidence was obtained that the opening of the beta-lactam ring of cephalosporin C and cephalothin is accompanied by the spontaneous expulsion of an acetoxy group and that of cephaloridine by the expulsion of pyridine. 5. A marked decrease in the minimum inhibitory concentration of benzylpenicillin and several hydrolysable derivatives of 7-aminocephalosporanic acid was observed when the size of the inoculum was decreased. This suggested that the production of a beta-lactamase contributed to the factors responsible for the very high resistance of Ps. pyocyanea to these substances. It was therefore concluded that the latter might show synergism with the enzyme inhibitors, methicillin and cloxacillin, against this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号