首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricin tripeptide (PTT). In the postulated biosynthetic pathway, one reaction, the isomerization of phosphinomethylmalate, resembles the aconitase reaction of the tricarboxylic acid (TCA) cycle. It was speculated that this reaction is carried out by the corresponding enzyme of the primary metabolism (C. J. Thompson and H. Seto, p. 197-222, in L. C. Vining and C. Stuttard, ed., Genetics and Biochemistry of Antibiotic Production, 1995). However, in addition to the TCA cycle aconitase gene, a gene encoding an aconitase-like protein (the phosphinomethylmalate isomerase gene, pmi) was identified in the PTT biosynthetic gene cluster by Southern hybridization experiments, using oligonucleotides which were derived from conserved amino acid sequences of aconitases. The deduced protein revealed high similarity to aconitases from plants, bacteria, and fungi and to iron regulatory proteins from eucaryotes. Pmi and the S. viridochromogenes TCA cycle aconitase, AcnA, have 52% identity. By gene insertion mutagenesis, a pmi mutant (Mapra1) was generated. The mutant failed to produce PTT, indicating the inability of AcnA to carry out the secondary-metabolism reaction. A His-tagged protein (Hispmi*) was heterologously produced in Streptomyces lividans. The purified protein showed no standard aconitase activity with citrate as a substrate, and the corresponding gene was not able to complement an acnA mutant. This indicates that Pmi and AcnA are highly specific for their respective enzymatic reactions.  相似文献   

2.
Streptomyces viridochromogenes Tü494 produces the herbicide phosphinothricyl-alanyl-alanine (phosphinothricin-tripeptide = PTT; bialaphos). Its bioactive moiety phosphinothricin competitively inhibits bacterial and plant glutamine synthetases. The biosynthesis of PTT includes the synthesis of the unusual amino acid N-acetyl-demethyl-phosphinothricin and a three step condensation via non-ribosomal peptide synthetases. Two characteristics within the PTT biosynthesis make it suitable to study the evolution of secondary metabolism biosynthesis. First, PTT biosynthesis represents the only known system where all peptide synthetase modules are located on separate proteins. This ‘single enzyme system’ might be an archetype of the multimodular and multienzymatic non-ribosomal peptide synthetases in evolutionary terms. The second interesting feature of PTT biosynthesis is the pathway-specific aconitase Pmi that is involved in the supply of N-acetyl-demethyl-phosphinothricin. Pmi is highly similar to the tricarboxylic acid aconitase AcnA. They share 64% identity at the DNA level and both belong to the Iron-Regulatory-Protein/AcnA family. Despite their high sequence similarity, AcnA and Pmi catalyze different reactions and are not able to substitute for each other. Thus, the enzyme pair AcnA/Pmi presents an example of the evolution of a secondary metabolite-specific enzyme from a primary metabolism enzyme.  相似文献   

3.
4.
The tricarboxylic acid (TCA) cycle aconitase gene acnA from Streptomyces viridochromogenes Tü494 was cloned and analyzed. AcnA catalyzes the isomerization of citrate to isocitrate in the TCA cycle, as indicated by the ability of acnA to complement the aconitase-deficient Escherichia coli mutant JRG3259. An acnA mutant was unable to develop aerial mycelium and to sporulate, resulting in a bald phenotype. Furthermore, the mutant did not produce the antibiotic phosphinothricin tripeptide, demonstrating that AcnA also affects physiological differentiation.  相似文献   

5.
Aconitase catalyzes a reversible isomerization of citrate into isocitrate in the Krebs cycle. Escherichia coli possesses two kinds of aconitases, aconitase A (AcnA) and B (AcnB), whose structural organizations are different. We analyzed the structural state of AcnA by the chemical crosslinking and small-angle X-ray scattering. The protein adopts a homodimer in solution, as AcnB does. The catalytic assay of the two aconitases revealed that the isomerization of isocitrate displayed a negative cooperativity of the two active sites within each homodimer. On the other hand, insignificant cooperativity was observed in the reverse reaction. Therefore, the homodimerization of AcnAB yields a substrate-dependent cooperative effect. In conjunction with the dissociable homodimer of AcnB, the catalytic property could affect the intracellular metabolic process involving the Krebs cycle.  相似文献   

6.
7.
8.
9.
Achromobacter denitrificans YD35 is an NO2-tolerant bacterium that expresses the aconitase genes acnA3, acnA4, and acnB, of which acnA3 is essential for growth tolerance against 100 mm NO2. Atmospheric oxygen inactivated AcnA3 at a rate of 1.6 × 10−3 min−1, which was 2.7- and 37-fold lower compared with AcnA4 and AcnB, respectively. Stoichiometric titration showed that the [4Fe-4S]2+ cluster of AcnA3 was more stable against oxidative inactivation by ferricyanide than that of AcnA4. Aconitase activity of AcnA3 persisted against high NO2 levels that generate reactive nitrogen species with an inactivation rate constant of k = 7.8 × 10−3 min−1, which was 1.6- and 7.8-fold lower than those for AcnA4 and AcnB, respectively. When exposed to NO2, the acnA3 mutant (AcnA3Tn) accumulated higher levels of cellular citrate compared with the other aconitase mutants, indicating that AcnA3 is a major producer of cellular aconitase activity. The extreme resistance of AcnA3 against oxidation and reactive nitrogen species apparently contributes to bacterial NO2 tolerance. AcnA3Tn accumulated less cellular NADH and ATP compared with YD35 under our culture conditions. The accumulation of more NO by AcnA3Tn suggested that NADH-dependent enzymes detoxify NO for survival in a high NO2 milieu. This novel aconitase is distributed in Alcaligenaceae bacteria, including pathogens and denitrifiers, and it appears to contribute to a novel NO2 tolerance mechanism in this strain.  相似文献   

10.
CO2 in required continuously during germination of Streptomyces viridochromogenes spores. Spores incubated in a defined germination medium in the absence of CO2 remain phase bright and do not release spore carbon. In the presence of CO2, the spores initiate germination accompanied by loss of refractility and spore carbon. The CO2 requirement is replaced by oxaloacetate or a mixture of tricarboxylic acid cycle (TCA) intermediates. Labeled CO2 is taken up by germinating spores, and is incorporated into protein and RNA. TCA cycle intermediates and related amino acids contain most of the acid-soluble label following short term exposures of germinating spores to 14CO2. TCA cycle inhibitors repress germination and 14CO2 uptake whereas folic acid antagonists do not. The results indicate that CO2 is incorporated into oxaloacetate which is converted to biosynthetic intermediates required for germination. Operation of the TCA cycle appears to be essential for spore germination. The conclusion is reached that CO2 is required during germination in order to maintain the cycle by an anaplerotic reaction.Abbreviations SN sucrose-nitrate medium - TX buffer Trisbuffer pH 7.3 containing-Triton X-100 - DGM defined germination medium - TX salts TX buffer plus Mg and Ca ions - TA trichloroacctic acid - TCA tricarboxylic acid  相似文献   

11.
Summary Replication of the Streptomyces ghanaensis plasmid pSG5 was shown to be temperature sensitive. The pSG5 replicon is stably inherited at temperatures below 34° C, but is lost at incubation temperatures above this. A family of cloning vectors was constructed using the pSG5 minimal replicon and different marker genes. The vectors obtained are small in size, have an intermediate copy number, possess a broad host range and are compatible with some other streptomycete vector systems. By increasing the incubation temperature, these vectors can be eliminated from their host cells very efficiently. The suitability of the pSG5 vector family for mutating chromosomal genes by gene disruption was demonstrated: pBN10, a pSG5 derivative containing an internal fragment of the phosphinothricyl-alanyl-alanine (PTT) resistance gene pat, was integrated into the chromosomal pat gene of the PTT-producer Streptomyces viridochromogenes thus inactivating PTT resistance. The integrated pBN10 plasmid was rescued from the chromosome, together with an adjacent fragment carrying DNA of the PTT biosynthetic cluster.  相似文献   

12.
Salmonella enterica serovar Typhimurium LT2 catabolizes propionate through the 2-methylcitric acid cycle, but the identity of the enzymes catalyzing the conversion of 2-methylcitrate into 2-methylisocitrate is unclear. This work shows that the prpD gene of the prpBCDE operon of this bacterium encodes a protein with 2-methylcitrate dehydratase enzyme activity. Homogeneous PrpD enzyme did not contain an iron-sulfur center, displayed no requirements for metal cations or reducing agents for activity, and did not catalyze the hydration of 2-methyl-cis-aconitate to 2-methylisocitrate. It was concluded that the gene encoding the 2-methyl-cis-aconitate hydratase enzyme is encoded outside the prpBCDE operon. Computer analysis of bacterial genome databases identified the presence of orthologues of the acnA gene (encodes aconitase A) in a number of putative prp operons. Homogeneous AcnA protein of S. enterica had strong aconitase activity and catalyzed the hydration of the 2-methyl-cis-aconitate to yield 2-methylisocitrate. The purification of this enzyme allows the complete reconstitution of the 2-methylcitric acid cycle in vitro using homogeneous preparations of the PrpE, PrpC, PrpD, AcnA, and PrpB enzymes. However, inactivation of the acnA gene did not block growth of S. enterica on propionate as carbon and energy source. The existence of a redundant aconitase activity (encoded by acnB) was postulated to be responsible for the lack of a phenotype in acnA mutant strains. Consistent with this hypothesis, homogeneous AcnB protein of S. enterica also had strong aconitase activity and catalyzed the conversion of 2-methyl-cis-aconitate into 2-methylisocitrate. To address the involvement of AcnB in propionate catabolism, an acnA and acnB double mutant was constructed, and this mutant strain cannot grow on propionate even when supplemented with glutamate. The phenotype of this double mutant indicates that the aconitase enzymes are required for the 2-methylcitric acid cycle during propionate catabolism.  相似文献   

13.
14.
15.
Previous studies have shown that the cardiolipin (CL)-deficient yeast mutant, crd1Δ, has decreased levels of acetyl-CoA and decreased activities of the TCA cycle enzymes aconitase and succinate dehydrogenase. These biochemical phenotypes are expected to lead to defective TCA cycle function. In this study, we report that signaling and anaplerotic metabolic pathways that supplement defects in the TCA cycle are essential in crd1Δ mutant cells. The crd1Δ mutant is synthetically lethal with mutants in the TCA cycle, retrograde (RTG) pathway, glyoxylate cycle, and pyruvate carboxylase 1. Glutamate levels were decreased, and the mutant exhibited glutamate auxotrophy. Glyoxylate cycle genes were up-regulated, and the levels of glyoxylate metabolites succinate and citrate were increased in crd1Δ. Import of acetyl-CoA from the cytosol into mitochondria is essential in crd1Δ, as deletion of the carnitine-acetylcarnitine translocase led to lethality in the CL mutant. β-oxidation was functional in the mutant, and oleate supplementation rescued growth defects. These findings suggest that TCA cycle deficiency caused by the absence of CL necessitates activation of anaplerotic pathways to replenish acetyl-CoA and TCA cycle intermediates. Implications for Barth syndrome, a genetic disorder of CL metabolism, are discussed.  相似文献   

16.

Introduction

Mammalian cells like Chinese hamster ovary (CHO) cells are routinely used for production of recombinant therapeutic proteins. Cells require a continuous supply of energy and nutrients to sustain high cell densities whilst expressing high titres of recombinant proteins. Cultured mammalian cells are primarily dependent on glucose and glutamine metabolism for energy production.

Objectives

The TCA cycle is the main source of energy production and its continuous flow is essential for cell survival. Modulated regulation of TCA cycle can affect ATP production and influence CHO cell productivity.

Methods

To determine the key metabolic reactions of the cycle associated with cell growth in CHO cells, we transiently silenced each gene of the TCA cycle using RNAi.

Results

Silencing of at least four TCA cycle genes was detrimental to CHO cell growth. With an exception of mitochondrial aconitase (or Aco2), all other genes were associated with ATP production reactions of the TCA cycle and their resulting substrates can be supplied by other anaplerotic and cataplerotic reactions. This study is the first of its kind to have established key role of aconitase gene in CHO cells. We further investigated the temporal effects of aconitase silencing on energy production, CHO cell metabolism, oxidative stress and recombinant protein production.

Conclusion

Transient silencing of mitochondrial aconitase inhibited cell growth, reduced ATP production, increased production of reactive oxygen species and reduced cell specific productivity of a recombinant CHO cell line by at least twofold.
  相似文献   

17.
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2 tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2. These findings demonstrate a link between NO2 tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2-tolerating mechanism in this strain.  相似文献   

18.
Mitochondrial energy metabolism and Krebs cycle activities are developmentally regulated in the life cycle of the protozoan parasite Trypanosoma brucei. Here we report cloning of a T. brucei aconitase gene that is closely related to mammalian iron-regulatory protein 1 (IRP-1) and plant aconitases. Kinetic analysis of purified recombinant TbACO expressed in Escherichia coli resulted in a K(m) (isocitrate) of 3 +/- 0.4 mM, similar to aconitases of other organisms. This was unexpected since an arginine conserved in the aconitase protein family and crucial for substrate positioning in the catalytic center and for activity of pig mitochondrial aconitase (Zheng, L., Kennedy, M. C., Beinert, H., and Zalkin, H. (1992) J. Biol. Chem. 267, 7895-7903) is substituted by leucine in the TbACO sequence. Expression of the 98-kDa TbACO was shown to be lowest in the slender bloodstream stage of the parasite, 8-fold elevated in the stumpy stage, and increased a further 4-fold in the procyclic stage. The differential expression of TbACO protein contrasted with only minor changes in TbACO mRNA, indicating translational or post-translational mechanisms of regulation. Whereas animal cells express two distinct compartmentalized aconitases, mitochondrial aconitase and cytoplasmic aconitase/IRP-1, TbACO accounts for total aconitase activity in trypanosomes. By cell fractionation and immunofluorescence microscopy, we show that native as well as a transfected epitope-tagged TbACO localizes in both the mitochondrion (30%) and in the cytoplasm (70%). Together with phylogenetic reconstructions of the aconitase family, this suggests that animal IRPs have evolved from a multicompartmentalized ancestral aconitase. The possible functions of a cytoplasmic aconitase in trypanosomes are discussed.  相似文献   

19.

Background  

It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the γ-proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号