首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The 5' ends of Escherichia coli lac mRNA   总被引:4,自引:0,他引:4  
We identified the predominant 5' ends of an mRNA in Escherichia coli to the exact nucleotides. There are four such ends of lac mRNA in fully induced cells. About 70% of the molecules have the reported major in vitro end, A-A-U-U-G (at +1), which is located 38 nucleotides before the A-U-G translation start. Another 15% start with A-U-U-G at +2, and about 8% start with A-U-U-A-G at -52. A fourth class of molecules begin with either A-G, C-A-G, A-C-A-G, or a weak A-C-A-C-A-G (at +24), observed only once. The origins of this latter set (less than or equal to 10% of the total) are not known, but they could represent "ragged" ends of the mRNA when it is degraded to the beginning of the ribosome-protected region of the message. The A-U-U-A-G molecules are probably initiated from an upstream promoter whose position would coincide with the cAMP-CRP DNA binding site for the major promoter.  相似文献   

5.
6.
The human multidrug resistance gene MDR1 encodes a membrane-bound protein, referred to as P-glycoprotein, that acts as a pump to extrude toxins from cells. The 3' untranslated region (3'UTR) of the human MDR1 mRNA is very AU-rich (70%) and contains AU-rich sequences similar to those shown to confer rapid decay on c-myc, c-fos, and lymphokine mRNAs. We tested the ability of the MDR1 3'UTR to act as an mRNA destabilizing element in the human hepatoma cell line HepG2. The MDR1 mRNA has an intermediate half-life of 8 h in HepG2 cells compared to a half-life of 30 min for c-myc mRNA. The MDR1 mRNA half-life was prolonged to >20 h upon treatment with the protein synthesis inhibitor cycloheximide. We constructed expression vectors containing the human beta-globin coding region with the 3'UTR from either MDR1 or c-myc. The c-myc 3'UTR increased the decay of the chimeric mRNA, but the MDR1 3'UTR had no effect. We tested the ability of MDR1 3'UTR sequences to compete for interaction with AU-binding proteins in cell extracts; MDR1 RNA probes had a fivefold lower affinity for AU-binding proteins that interact with the c-myc AU-rich 3'UTR. Overall, our data suggest that the MDR1 3'UTR does not behave as an active destabilizing element in HepG2 cells.  相似文献   

7.
8.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

9.
10.
11.
Translational efficiency of an AUG, CUG, GUG, or UUG initiation codon was measured for the naturally leaderless cI mRNA from bacteriophage lambda. In a cI-lacZ translational fusion, only AUG supported a high level of expression; GUG supported a low level of expression, while UUG and CUG expression was barely above background levels. Addition of an untranslated lac leader and Shine-Dalgarno sequence to cI increased expression but still showed a dependence on an AUG for maximum expression. cI-lacZ mRNA with an AUG initiation codon showed a greater in vitro ribosome binding strength and a higher level of full-length in vivo mRNA, suggesting that the initiation codon is an important determinant of ribosome binding strength and translational efficiency for mRNA with or without the 5' untranslated leader.  相似文献   

12.
Increased translation of p27 mRNA correlates with withdrawal of cells from the cell cycle. This raised the possibility that antimitogenic signals might mediate their effects on p27 expression by altering complexes that formed on p27 mRNA, regulating its translation. In this report, we identify a U-rich sequence in the 5' untranslated region (5'UTR) of p27 mRNA that is necessary for efficient translation in proliferating and nonproliferating cells. We show that a number of factors bind to the 5'UTR in vitro in a manner dependent on the U-rich element, and their availability in the cytosol is controlled in a growth- and cell cycle-dependent fashion. One of these factors is HuR, a protein previously implicated in mRNA stability, transport, and translation. Another is hnRNP C1 and C2, proteins implicated in mRNA processing and the translation of a specific subset of mRNAs expressed in differentiated cells. In lovastatin-treated MDA468 cells, the mobility of the associated hnRNP C1 and C2 proteins changed, and this correlated with increased p27 expression. Together, these data suggest that the U-rich dependent RNP complex on the 5'UTR may regulate the translation of p27 mRNA and may be a target of antimitogenic signals.  相似文献   

13.
Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich. Such features promote formation of stable secondary structure, and many mRNAs encoding proteins involved in cell growth, proliferation and apoptosis have structured 5' UTRs, which in many cases harbour internal ribosome entry sites (IRESs) and upstream open-reading frames (uORFs). In this review we discuss how secondary structural elements in the 5' UTR can regulate translation and how mutations that perturb these secondary structural elements can have implications for disease and tumourigenesis.  相似文献   

14.
Reliable methods for conditional gene silencing in bacteria have been elusive. To improve silencing by expressed antisense RNAs (asRNAs), we systematically altered several design parameters and targeted multiple reporter and essential genes in Escherichia coli. A paired termini (PT) design, where flanking inverted repeats create paired dsRNA termini, proved effective. PTasRNAs targeted against the ackA gene within the acetate kinase-phosphotransacetylase operon (ackA-pta) triggered target mRNA decay and a 78% reduction in AckA activity with high genetic penetrance. PTasRNAs are abundant and stable and function through an RNase III independent mechanism that requires a large stoichiometric excess of asRNA. Conditional ackA silencing reduced carbon flux to acetate and increased heterologous gene expression. The PT design also improved silencing of the essential fabI gene. Full anti-fabI PTasRNA induction prevented growth and partial induction sensitized cells to a FabI inhibitor. PTasRNAs have potential for functional genomics, antimicrobial discovery and metabolic flux control.  相似文献   

15.
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3′ UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3′ UTR and the pericentriolar material-1 (Pcm-1) mRNA 3′ UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3′ UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3′ UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.  相似文献   

16.
Translation initiation requires the precise positioning of a ribosome at the start codon. The major signals of bacterial mRNA that direct the ribosome to a translational start site are the Shine-Dalgarno (SD) sequence within the untranslated leader and the start codon. Evidence for the presence of many non-SD-led genes in prokaryotes provides a motive for studying additional interactions between ribosomes and mRNA that contribute to translation initiation. A high incidence of adenines has been reported downstream of the start codon for many Escherichia coli genes, and addition of downstream adenine-rich sequences increases expression from several genes in E. coli. Here we describe site-directed mutagenesis of the E. coli aroL, pncB, and cysJ coding sequences that was used to assess the contribution of naturally occurring adenines to in vivo expression and in vitro ribosome binding from mRNAs with different SD-containing untranslated leaders. Base substitutions that decreased the downstream adenines by one or two nucleotides decreased expression significantly from aroL-, pncB-, and cysJ-lacZ fusions; mutations that increased downstream adenines by one or two nucleotides increased expression significantly from aroL- and cysJ-lacZ fusions. Using primer extension inhibition (toeprint) and filter binding assays to measure ribosome binding, the changes in in vivo expression correlated closely with changes in in vitro ribosome binding strength. Our data are consistent with a model in which downstream adenines influence expression through their effects on the mRNA-ribosome association rate and the amount of ternary complex formed. This work provides evidence that adenine-rich sequence motifs might serve as a general enhancer of E. coli translation.  相似文献   

17.
Several functions have been attributed to protein binding within the 3'untranslated region (3'UTR) of mRNA, including mRNA localization, stability, and translational repression. Vimentin is an intermediate filament protein whose 3'untranslated sequence is highly conserved between species. In order to identify sequences that might play a role in vimentin mRNA function, we synthesized32P-labeled RNA from different regions of vimentin's 3'UTR and assayed for protein binding with HeLa extracts using band shift assays. Sequences required for binding are contained within a region 61-114 nucleotides downstream of the stop codon, a region which is highly conserved from Xenopus to man. As judged by competition assays, binding is specific. Solution probing studies of 32P-labeled RNA with various nucleases and lead support a complex stem and loop structure for this region. Finally, UV cross-linking of the RNA-protein complex identifies an RNA binding protein of 46 kDa. Fractionation of a HeLa extract on a sizing column suggests that in addition to the 46 kDa protein, larger complexes containing additional protein(s) can be identified. Vimentin mRNA has been shown to be localized to the perinuclear region of the cytoplasm, possibly at sites of intermediate filament assembly. To date, all sequences required for localization of various mRNAs have been confined to the 3'UTR. Therefore, we hypothesize that this region and associated protein(s) might be important for vimentin mRNA function such as in localization.  相似文献   

18.
T J McGarry  S Lindquist 《Cell》1985,42(3):903-911
When Drosophila cells are heat shocked, the translation of normal cellular mRNAs is repressed, while mRNAs encoding the heat-shock proteins are translated at high rates. We have found that the hsp70 message is not translated at high temperatures when its leader sequence is deleted. This message is translated when the cells are allowed to recover at 25 degrees C, but the translation ceases when the cells are given a second heat shock. A message with an extra 39 bases added onto the 5' end of the leader behaves in the same way. However, if either of two conserved sequence elements in the leader is deleted, the message is still translated during heat shock. Although the specific feature responsible for the preferential translation of heat-shock messages is not yet identified, we conclude that it must reside in the 5' untranslated leader.  相似文献   

19.
20.
The expression of human parathyroid hormone (hPTH) in Escherichia coli was optimized by variations of the spacing sequence between the ribosome-binding site (RBS) and the beginning of the gene (ATG) and by increasing the complementarity of the RBS to the 16 S rRNA. The expression level of 3 micrograms/liter increased more than 100-fold to 475 micrograms/liter as a direct consequence of modifications in the region 5' of the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号