首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
O. Yarchuk  I. Iost  M. Dreyfus   《Biochimie》1991,73(12):1533-1541
The technique of gene fusion, in which the gene of interest, severed from its 3' end, is in-phase fused to a reporter gene--usually lacZ--is widely used to study translational regulation in Escherichia coli. Implicit in these approaches is the assumption that the activity of the ribosome binding site (RBS) fused in-phase with lacZ, does not per se modify the steady-state level of the lacZ mRNA. Herein, we have tested this hypothesis, using a model system in which the RBS of the lamB gene is fused to lacZ. Several point mutations affecting translation initiation have been formerly characterized in this RBS, and we used Northern blots to study their effect upon the lacZ mRNA pattern. Two series of constructs were assayed: in the first one, a 51-bp fragment centered around the lamB initiator codon, was inserted in front of lacZ within the natural lactose operon, whereas in the second the lacZ gene was fused to the genuine malK-lamB operon just downstream from the lamB RBS. We observed that in the first series, the concentration and average molecular weight of the lacZ mRNA dropped sharply as the efficiency of the RBS decreased. This apparently arose from a decreased stability of the message, since the mRNA patterns are equalized when the endonuclease RNase E is inactivated. We suggest that in this case the rate limiting step in the decay process is an RNase E cleavage that is outcompeted by translation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Light-responsive gene expression is crucial to photosynthesizing organisms. Here, we studied functions of cis-elements (AU-box and SD sequences) and a trans-acting factor (ribonuclease, RNase) in light-responsive expression in cyanobacteria. The results indicated that AU-rich nucleotides with an AU-box, UAAAUAAA, just upstream from an SD confer instability on the mRNA under darkness. An RNase E/G homologue, Slr1129, of the cyanobacterium Synechocystis sp. strain PCC 6803 was purified and confirmed capable of endoribonucleolytic cleavage at the AU- (or AG)-rich sequences in vitro. The cleavage depends on the primary target sequence and secondary structure of the mRNA. Complementation tests using Escherichia coli rne/rng mutants showed that Slr1129 fulfilled the functions of both the RNase E and RNase G. An analysis of systematic mutations in the AU-box and SD sequences showed that the cis-elements also affect significantly mRNA stability in light-responsive genes. These results strongly suggested that dark-induced mRNA instability involves RNase E/G-type cleavage at the AU-box and SD sequences in cyanobacteria. The mechanical impact and a possible common mechanism with RNases for light-responsive gene expression are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The 3' AU-rich region of human beta-1 interferon (hu-IFN beta) mRNA was found to act as a translational inhibitory element. The translational regulation of this 3' AU-rich sequence and the effect of its association with the poly(A) tail were studied in cell-free rabbit reticulocyte lysate. A poly(A)-rich hu-IFN beta mRNA (110 A residues) served as an inefficient template for protein synthesis. However, translational efficiency was considerably improved when the poly(A) tract was shortened (11 A residues) or when the 3' AU-rich sequence was deleted, indicating that interaction between these two regions was responsible for the reduced translation of the poly(A)-rich hu-IFN beta mRNA. Differences in translational efficiency of the various hu-IFN beta mRNAs correlated well with their polysomal distribution. The poly(A)-rich hu-IFN beta mRNA failed to form large polysomes, while its counterpart bearing a short poly(A) tail was recruited more efficiently into large polysomes. The AU-rich sequence-binding activity was reduced when the RNA probe contained both the 3' AU-rich sequence and long poly(A) tail, supporting a physical association between these two regions. Further evidence for this interaction was achieved by RNase H protection assay. We suggest that the 3' AU-rich sequence may regulate the translation of hu-IFN beta mRNA by interacting with the poly(A) tail.  相似文献   

5.
F Braun  J Le Derout    P Régnier 《The EMBO journal》1998,17(16):4790-4797
The hypothesis generally proposed to explain the stabilizing effect of translation on many bacterial mRNAs is that ribosomes mask endoribonuclease sites which control the mRNA decay rate. We present the first demonstration that ribosomes interfere with a particular RNase E processing event responsible for mRNA decay. These experiments used an rpsO mRNA deleted of the translational operator where ribosomal protein S15 autoregulates its synthesis. We demonstrate that ribosomes inhibit the RNase E cleavage, 10 nucleotides downstream of the rpsO coding sequence, responsible for triggering the exonucleolytic decay of the message mediated by polynucleotide phosphorylase. Early termination codons and insertions which increase the length of ribosome-free mRNA between the UAA termination codon and this RNase E site destabilize the translated mRNA and facilitate RNase E cleavage, suggesting that ribosomes sterically inhibit RNase E access to the processing site. Accordingly, a mutation which reduces the distance between these two sites stabilizes the mRNA. Moreover, an experiment showing that a 10 nucleotide insertion which destabilizes the untranslated mRNA does not affect mRNA stability when it is inserted in the coding sequence of a translated mRNA demonstrates that ribosomes can mask an RNA feature, 10-20 nucleotides upstream of the processing site, which contributes to the RNase E cleavage efficiency.  相似文献   

6.
7.
8.
9.
10.
There are two major components of Escherichia coli ribosomes directly involved in selection and binding of mRNA during initiation of protein synthesis-the highly conserved 3' end of 16S rRNA (aSD) complementary to the Shine-Dalgarno (SD) domain of mRNA, and the ribosomal protein S1. A contribution of the SD-aSD and S1-mRNA interactions to translation yield in vivo has been evaluated in a genetic system developed to compare efficiencies of various ribosome-binding sites (RBS) in driving beta-galactosidase synthesis from the single-copy (chromosomal) lacZ gene. The in vivo experiments have been supplemented by in vitro toeprinting and gel-mobility shift assays. A shortening of a potential SD-aSD duplex from 10 to 8 and to 6 bp increased the beta-galactosidase yield (four- and sixfold, respectively) suggesting that an extended SD-aSD duplex adversely affects translation, most likely due to its redundant stability causing ribosome stalling at the initiation step. Translation yields were significantly increased upon insertion of the A/U-rich S1 binding targets upstream of the SD region, but the longest SD remained relatively less efficient. In contrast to complete 30S ribosomes, the S1-depleted 30S particles have been able to form an extended SD-aSD duplex, but not the true ternary initiation complex. Taken together, the in vivo and in vitro data allow us to conclude that S1 plays two roles in translation initiation: It forms an essential part of the mRNA-binding track even when mRNA bears a long SD sequence, and through the binding to the 5' untranslated region, it can ensure a substantial enhancing effect on translation.  相似文献   

11.
12.
B Schauder  J E McCarthy 《Gene》1989,78(1):59-72
A range of translational initiation regions (TIR) was created by combining synthetic DNA fragments derived from the atpB-atpE intercistronic sequence of Escherichia coli with the cDNA sequence encoding mature human interleukin 2 (IL-2), the E. coli fnr gene, or an fnr::lacZ gene fusion. Both the overall rates of gene expression and the relative concentrations and stabilities of the corresponding mRNA species were estimated in strains bearing the constructs on plasmids. These measurements served as the basis for analyses of the relationship between the structure of the TIR and the true rates of translation that it promotes. The constructs involving the IL-2 cDNA were predicted to allow much less stable secondary structure within the TIR than those involving the N-terminal region of the fnr gene. Thus by combining one set of upstream sequences with two different types of N-terminal coding sequence, it was possible to distinguish between the respective influences of primary and secondary structure upon initiation. The data indicate that in the presence of a given Shine-Dalgarno (SD)/start codon combination, the decisive factor for translational initiation efficiency is the stability of base pairing involving, or in the vicinity of, this region. The sequences contributing to this secondary structure can be many bases upstream of the SD region and/or downstream of the start codon. There was no indication that the specific base sequence upstream of the SD region could, other than to the extent that it contributed to the local secondary structure, significantly influence the efficiency of translational initiation.  相似文献   

13.
14.
15.
We determined the in vivo translational efficiency of 'unleadered' lacZ compared with a conventionally leadered lacZ with and without a Shine–Dalgarno (SD) sequence in Escherichia coli and found that changing the SD sequence of leadered lacZ from the consensus 5'-AGGA-3' to 5'-UUUU-3' results in a 15-fold reduction in translational efficiency; however, removing the leader altogether results in only a twofold reduction. An increase in translation coincident with the removal of the leader lacking a SD sequence suggests the existence of stronger or novel translational signals within the coding sequence in the absence of the leader. We examined, therefore, a change in the translational signals provided by altering the AUG initiation codon to other naturally occurring initiation codons (GUG, UUG, CUG) in the presence and absence of a leader and find that mRNAs lacking leader sequences are dependent upon an AUG initiation codon, whereas leadered mRNAs are not. This suggests that mRNAs lacking leader sequences are either more dependent on perfect codon–anticodon complementarity or require an AUG initiation codon in a sequence-specific manner to form productive initiation complexes. A mutant initiator tRNA with compensating anticodon mutations restored expression of leadered, but not unleadered, mRNAs with UAG start codons, indicating that codon–anticodon complementarity was insufficient for the translation of mRNA lacking leader sequences. These data suggest that a cognate AUG initiation codon specifically serves as a stronger and different translational signal in the absence of an untranslated leader.  相似文献   

16.
17.
18.
19.
20.
S Loechel  J M Inamine    P C Hu 《Nucleic acids research》1991,19(24):6905-6911
The tuf gene of Mycoplasma genitalium uses a signal other than a Shine-Dalgarno sequence to promote translation initiation. We have inserted the translation initiation region of this gene in front of the Escherichia coli lacZ gene and shown that it is recognized by the translational machinery of E. coli; the signal operates in vivo at roughly the same efficiency as a synthetic Shine-Dalgarno sequence. The M. genitalium sequence was also used to replace the native translation initiation region of the cat gene. When assayed in E. coli, the M. genitalium sequence is equivalent to a Shine-Dalgarno sequence in stimulating translation of this mRNA also. Site-directed mutagenesis enabled us to identify some of the bases that comprise the functional sequence. We propose that the sequence UUAACAACAU functions as a ribosome binding site by annealing to nucleotides 1082-1093 of the E. coli 16S rRNA. The activity of this sequence is enhanced when it is present in the loop of a stem-and-loop structure. Additional sequences both upstream and downstream of the initiation codon are also involved, but their role has not been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号