首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diet of 1% beta-guanidinopropionic acid (beta-GPA) fed to rats for weeks results in decreased muscle adenosine triphosphate and creatine phosphate concentrations (J. Biol. Chem. 249: 1060-1063, 1974), increased activities of selected mitochondrial enzymes (Biochem. J. 232: 125-131, 1985), and atrophied type IIb fibers (Lab. Invest. 33: 151-158, 1975). The hypothesis of the present study was that chronic beta-GPA feeding would increase cytochrome c mRNA in muscle and would decrease alpha-skeletal actin mRNA in type IIb muscle. Data collected supported, in part, the hypothesis. After 22 days of a 1% beta-GPA diet, cytochrome c mRNA was increased 60-67% in muscles with inherently low cytochrome c mRNA but was not altered in muscles with higher cytochrome c mRNA levels. alpha-Skeletal actin mRNA was unchanged in muscles with low and high cytochrome c mRNA after 22 days of 1% beta-GPA. After 66 days of beta-GPA feeding, both cytochrome c mRNA and alpha-skeletal actin mRNA were decreased 18 and 26%, respectively, per unit of total RNA, in white quadriceps muscle. At the same time muscles composed of predominantly type II fibers atrophied 22%, whereas type I muscle size was unaltered. These data suggest that high-energy phosphate levels could play some role in adaptive changes in muscle composition.  相似文献   

2.
It is well-known that 2 weeks of hind-limb suspension or space flight induce the sufficient decrease of the physical performance and simultaneously changes of muscle contractile properties and fiber size. However, the data on enzyme activities changes at present are contradictory. Numerous authors have pointed to the increase, reduction of its activity as well as its stability after experiments of the similar design. In previous studies it was shown that beta-GPA (beta-guanidino-propionic acid) administration increased the oxidative enzyme activities in the skeletal muscles and improved their contractile properties in hind-limb suspended rats. The aim of our study is to clear out what determines changes of the physical performance after 2 weeks of hind-limb suspension and beta-GPA administration.  相似文献   

3.
This study tested the hypothesis that the decreased resistance of skeletal muscles to fatigue after a period of inadequate nutrition is a consequence of the type of fatigue test employed. Rats (n = 8) were fed hypocalorically for 10 days, resulting in a 33.5 +/- 3.0% (SE) reduction in body weight. The fatigue resistance of muscles was assessed with use of isolated soleus muscles at a temperature of 25 degrees C. Fatigue resistance was determined from the decline in isometric force during a series of tetanic contractions. Two contrasting contraction protocols were devised to test the susceptibility of muscles to fatigue. One protocol was designed to require high rates of energy supply and hence force a dependence on glycolytic energy supply pathways. The second protocol required much lower rates of energy supply that could be entirely met by oxidative energy supply processes. During the high energy demand (glycolytic) protocol, the force produced by muscles from a control group of rats decreased to 78.7 +/- 0.8% (n = 12 muscles) of the initial value. Hypocaloric feeding significantly reduced the resistance of muscles to fatigue: force declined to 61.3 +/- 3.5% (n = 16 muscles) during the contraction protocol. In contrast, when fatigue was quantified using the low energy demand (oxidative) contraction protocol, the effect of nutritional status on fatigue resistance was entirely abolished. This result supports the hypothesis that resistance to fatigue is critically dependent on the fatigue test employed.  相似文献   

4.
AMP deaminase catalyzes deamination of the AMP formed in contracting muscles to inosine 5'-monophosphate (IMP). Slow-twitch muscle has only approximately 30% as high a level of AMP deaminase activity as fast-twitch muscle in the rat, and rates of IMP formation during intense contractile activity are much lower in slow-twitch muscle. We found that feeding the creatine analogue beta-guanidinopropionic acid (beta-GPA) to rats, which results in creatine depletion, causes a large decrease in muscle AMP deaminase. This adaptation was used to evaluate the role of AMP deaminase activity level in accounting for differences in IMP production in slow-twitch and fast-twitch muscles. beta-GPA feeding for 3 wk lowered AMP deaminase activity in fast-twitch epitrochlearis muscle to a level similar to that found in the normal slow-twitch soleus muscle but had no effect on the magnitude of the increase in IMP in response to intense contractile activity. Despite a similar decrease in ATP in the normal soleus and the epitrochlearis from beta-GPA-fed rats, the increase in IMP was only approximately 30% as great in the soleus in response to intense contractile activity. These results demonstrate that the accumulation of less IMP in slow- compared with fast-twitch skeletal muscle during contractile activity is not due to the lower level of AMP deaminase in slow-twitch muscle.  相似文献   

5.
Comparison of amplitude-time characteristics of fast extensor digitorum longus muscles (m. EDL) isolated from control rats and rats with model of acute streptozotocin-induced diabetes mellitus (DM) 12 and 30 days after treatment with streptozotozin did not reveal significant changes of strength of single normalized contractile responses as compared with control. In slow (m. Soleus) muscles of rats with the 30-day long SD, essential changes of the amplitude-time characteristics of such contractile responses were observed: a decrease of their amplitude and an increase of duration. In the diabetic rats treated with insulin there develops resistance of skeletal muscles of both types to action of exogenous insulin. Both in control and in diabetic animals the exhausting stimulation of m. EDL with trains from 5 impulses did not reveal significant differences at early (up to 3 min) terms of development of fatigue. Under similar conditions, fatigue of m. Soleus in rats of the both diabetic groups developed significantly faster as compared with control (already in 30 s after the beginning of stimulation). Insulin at a concentration of 0.5–1 nM produced a dose-dependent decrease of amplitude of single contractile responses in fast and slow muscles of rats with the acute SD model (the negative inotropic action). Earlier, we demonstrated in healthy rats the similar action of insulin, but at the higher concentrations [1]. Insulin at a concentration of 10 nM did not produce an essential effect on dynamics of depression of responses in the course of development of fatigue at tetanical stimulation of m. EDL and m. Soleus both in control and in diabetic rats, but affected essentially the dynamics of change of duration of the half-decay (Thd) of their tetanical responses. The presence of insulin in the washing solution led to stabilization of the period of muscle relaxation in the course of development of fatigue in all studied animal groups.  相似文献   

6.
It has been suggested that a specific phosphagen pool might serve a sensor function, allowing direct detection of alveolar hypoxia by the pulmonary vascular smooth muscle. The possibility that phosphocreatine (PCr) levels could serve as such a sensor was assessed in isolated rat lungs. Pulmonary vascular reactivity to angiotensin II and alveolar hypoxia was assessed in lungs from control and PCr-depleted rats. PCr depletion was accomplished by feeding rats a diet containing 2% beta-guanidino propionic acid (beta-GPA), an competitive inhibitor of creatine uptake. Total creatine was depleted in beta-GPA lungs, compared to control lungs (p less than 0.05). Lung PCr levels were undetectable by the available 31P NMR spectroscopy system. PCr and creatine were depleted in hearts from beta-GPA rats relative to control hearts (p less than 0.001). Normoxic pulmonary artery pressure and the pressor responses to angiotensin II and hypoxia were not qualitatively or quantitatively altered by the diet indicating either that PCr is not a critical participant in hypoxic pulmonary vasoconstriction or that the degree of PCr depletion achieved was inadequate to expose its role in the hypoxic pressor response.  相似文献   

7.
Decreasing muscle phosphagen content through dietary administration of the creatine analog beta-guanidinopropionic acid (beta-GPA) improves skeletal muscle oxidative capacity and resistance to fatigue during aerobic exercise in rodents, similar to that observed with endurance training. Surprisingly, the effect of beta-GPA on muscle substrate metabolism has been relatively unexamined, with only a few reports of increased muscle GLUT4 content and insulin-stimulated glucose uptake/clearance in rodent muscle. The effect of chronically decreasing muscle phophagen content on muscle fatty acid (FA) metabolism (transport, oxidation, esterification) is virtually unknown. The purpose of the present study was to examine changes in muscle substrate metabolism in response to 8 wk feeding of beta-GPA. Consistent with other reports, beta-GPA feeding decreased muscle ATP and total creatine content by approximately 50 and 90%, respectively. This decline in energy charge was associated with simultaneous increases in both glucose (GLUT4; +33 to 45%, P < 0.01) and FA (FAT/CD36; +28 to 33%, P < 0.05) transporters in the sarcolemma of red and white muscle. Accordingly, we also observed significant increases in insulin-stimulated glucose transport (+47%, P < 0.05) and AICAR-stimulated palmitate oxidation (+77%, P < 0.01) in the soleus muscle of beta-GPA-fed animals. Phosphorylation of AMPK (+20%, P < 0.05), but not total protein, was significantly increased in both fiber types in response to muscle phosphagen reduction. Thus the content of sarcolemmal transporters for both of the major energy substrates for muscle increased in response to a reduced energy charge. Increased phosphorylation of AMPK may be one of the triggers for this response.  相似文献   

8.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

9.
We tested the effects of inhibiting the carbonic anhydrase activity of rat soleus and extensor digitorum longus muscles on the isometric contractile properties and the resistance to fatigue. SOL and EDL muscles from female rats were incubated in vitro in the presence of methazolamide, a specific inhibitor of carbonic anhydrase, before determining their contractile properties. Methazolamide had no effects on the contractile properties of the soleus muscle (10(-5) or 10(-3) M) and extensor digitorum longus (10(-3) M), except for the half-relaxation time of the soleus muscle which increased significantly. Values for half-relaxation time were significantly increased with both concentrations of the inhibitor. Muscles were then submitted to a fatigue protocol lasting 30 min. During the fatigue test, no significant difference was observed between control and 10(-5) M methazolamide soleus muscles. In presence of 10(-3) M methazolamide however, the soleus muscle showed a significantly increased resistance to fatigue compared with control preparations. No significant effect was observed with the extensor digitorum longus muscle exposed to 10(-3) M methazolamide. Results are discussed in terms of the presence of two different isoforms of carbonic anhydrase that may be associated with calcium uptake and energy metabolic processes, respectively.  相似文献   

10.
Our purpose was to determine the effects of chronic electrical stimulation on the structure and function of neve-intact grafts in rats. Fourteen days after grafting, extensor digitorum longus (EDL) grafts (n = 6) and nongrafted EDL muscles (n = 4) were stimulated 8 h/day at 10 Hz for 26 days. Measurements were made subsequently of cytochrome c concentration, capillary density, contraction and relaxation times, developed tension, and the resistance to fatigue. Compared with contralateral nonstimulated grafts, chronically stimulated grafts demonstrated a 65% greater cytochrome c concentration, 45% greater number of capillaries per millimeter squared, 30% greater resistance to fatigue, 35% longer contraction time, 30% longer relaxation time, and 30% lower maximum tetanic tension. The differences that resulted from the stimulation of nongrafted EDL muscles were significant but of less magnitude. Chronic stimulation of 8 h/day provided a mixed stimulus for adaptation that enhanced the metabolic and endurance characteristics of fibers in muscles and grafts, but decreased the total fiber cross-sectional area and development of force.  相似文献   

11.
Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.  相似文献   

12.
Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).  相似文献   

13.
It is known that a long-duration decline of high-energy phosphate (HP) level in skeletal muscles, induced by administration of beta-guanidinpropionic acid (beta-GPA), is followed by an increase in mitochondrial enzyme activities (MEA). The same increase in MEA was observed in the course of physical exercise training. Under gravitational inloading decrease in MEA and increase in the level of high-energy phosphates occurred. If changes in (HP) level are believed to trigger the alterations in MEA, the increase in high-energy phosphate levels in muscles is to lead to a decline in MEA as well. The present work was purposed to reveal if changes in HP level under different contractile activity levels may be associated with changes in oxidative potential in the skeletal muscles.  相似文献   

14.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

15.
The role of extracellular K+ concentration in the propagation velocity of action potential was tested in isolated rat skeletal muscles. Different K+ concentrations were produced by KCl additions to extracellular solution. Action potentials were measured extracellularly by means of two annular platinum electrodes. Fibre bundles of m. soleus (SOL), m. extensor digitorum longus (EDL), red (SMR) and white (SMW) part of m. sternomastoideus were maximum stimulated. The conduction velocity (c.v.) was calculated from the distance between the electrodes and the time delay of the potentials measured at 22 degrees C. In Tyrode solution containing 5 mmol/l K+, the c.v. was close to 1 m.s-1. Bundles of the fast muscle type seemed to have a somewhat higher c.v. The differences observed in these studies were not significant. At higher temperatures, the c.v. increased (Q10 of approx. 2) and a dissociation between SMR and SMW muscles appeared. An elevation of K+ concentration to 10 mmol/l induced a drop of the c.v. by approx. 25% and 15% in EDL and SOL muscles, respectively. After return to normal solution, the recovery was not complete within 30 min. In K+ free solution the c.v. of EDL and SM muscles rose by a factor of 1.5, but less in SOL muscles. The weaker response of SOL to K+ modification was related to the higher resistance of this muscle to fatigue. This suggestion was supported by experiments on fatigued fibre bundles. Immediately after a tetanic stimulation producing fatigue, the c.v. of EDL and SOL muscles dropped similarly as in 10 mmol/l K+; again, the drop was less for SOL muscles. Adrenaline (0.5-10.0 mumol/l) enhanced both the c.v. and the twitch amplitude. The results support the suggestion that extracellular K+ accumulation during activity is an essential factor of muscle fatigue.  相似文献   

16.
Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on functional isolation and electrical stimulation of axons of single motor units. Composition of motor units was different for male and female subjects, with higher number of the fast fatigable and lower number of slow type units in male animals. The contraction and the half-relaxation times were significantly longer in male motor units, what might be due to differences in muscle size. Slower contraction of male motor units likely corresponds to lower firing rates of their motoneurons. On the other hand, no significant differences between sexes were observed with respect to force parameters of motor units (the twitch and the maximum tetanus forces), except the fast resistant units (higher force values in male muscles). The mass of the muscle was approximately 1.5 time bigger in male rats. However, the mean ratio of motor unit tetanus force to the muscle mass was almost twice smaller in this group, what indirectly suggests that muscles of male rats are composed of higher number of motor units. Finally, female muscles appeared to have higher fatigue resistance as the effect of higher proportion of resistant units (slow and fast resistant) and higher values of the fatigue index in respective motor unit types. The motor unit action potentials in female rats had slightly lower amplitudes and shorter time parameters although this difference was significant only for fast resistant units.  相似文献   

17.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

18.
The aim of this study was to analyze the effects of chronic administration of the beta(2)-agonist clenbuterol (1.5 mg x kg(-1) x day(-1) for 4 wk in the drinking water) on respiratory (diaphragm and parasternal intercostal) and hindlimb (tibialis and soleus) muscles in young rats during postnatal development (21 to 49 postnatal days). The treatment resulted in very little stimulation of muscle growth. Significant slow-to-fast transitions in the expression of myosin heavy chain isoforms and significant increases in the myofibrillar ATPase activity were found in the diaphragm and soleus, whereas tibialis anterior and intercostal muscles did not show any significant fiber-type alteration. Decrease of oxidative enzyme activities and increase of glycolytic enzyme activities were also observed. It is concluded that whereas the growth stimulation is age dependent and only detectable in adult rats, the fiber-type transformation is also present in weaning rats and particularly evident in the soleus and diaphragm. The fiber-type transformation caused by clenbuterol might lead to an enhancement of contractile performance and also to a reduced resistance to fatigue.  相似文献   

19.
The influence of an anabolic androgenic steroid (AAS) on thymidine and amino acid uptake in rat hindlimb skeletal muscles during 14 days after a single exhaustive bout of weight lifting was determined. Adult male rats were divided randomly into Control or Steroid groups. Nandrolone decanoate was administered to the Steroid group 1 wk before the exercise bout. [3H]thymidine and [14C]leucine labeling were used to determine the serial changes in cellular mitotic activity, amino acid uptake, and myosin synthesis. Serum creatine kinase (CK) activity, used as a measure of muscle damage, increased 30 and 60 min after exercise in both groups. The total amount of weight lifted was higher, whereas CK levels were lower in Steroid than in Control rats. [3H]thymidine uptake peaked 2 days after exercise in both groups and was 90% higher in Control than in Steroid rats, reflecting a higher level of muscle damage. [14C]leucine uptake was approximately 80% higher at rest and recovered 33% faster postexercise in Steroid than in Control rats. In a separate group of rats, the in situ isometric mechanical properties of the plantaris muscle were determined. The only significant difference was a higher fatigue resistance in the Steroid compared with the Control group. Combined, these results indicate that AAS treatment 1) ameliorates CK efflux and the uptake of [3H]thymidine and enhances the rate of protein synthesis during recovery after a bout of weight lifting, all being consistent with there being less muscle damage, and 2) enhances in vivo work capacity and the in situ fatigue resistance of a primary plantarflexor muscle.  相似文献   

20.
Blood flow and glycogen use in hypertrophied rat muscles during exercise   总被引:1,自引:0,他引:1  
Previous findings suggest that skeletal muscle that has enlarged as a result of removal of synergistic muscles has a similar metabolic capacity and improved resistance to fatigue compared with normal muscle. The purpose of the present study was to follow blood flow and glycogen loss patterns in hypertrophied rat plantaris plantaris and soleus muscles during treadmill exercise to provide information on the adequacy of perfusion of the muscles during in vivo exercise. Thirty days following surgical removal of gastrocnemius muscle, blood flows (determined with radiolabeled microspheres) and glycogen concentrations were determined in all of the ankle extensor muscles of experimental and sham-operated control rats during preexercise and after 5-6 min of treadmill exercise at 15 m/min. There were no differences (P greater than 0.05) in blood flows per unit mass or glycogen concentrations between control and hypertrophied plantaris or soleus muscles at either time, although both muscles were larger (P less than 0.05) in the experimental group (plantaris: 95%; soleus: 40%). None of the other secondary ankle extensor muscles (tibialis posterior, flexor digitorum longus or flexor hallicus longus) hypertrophied in response to removal of gastrocnemius. These results provide indirect evidence that O2 delivery in the enlarged muscles is not compromised during low-intensity treadmill exercise due to limited perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号