首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate criteria for maximal effort in middle-aged men and women undertaking a maximal exercise test until they were exhausted if no measurements of oxygen uptake are made. A large group of 2164 men and 975 women, all active in sports and aged between 40 and 65 years, volunteered for a medical examination including a progressive exercise test to exhaustion on a cycle ergometer. In the 3rd min of recovery a venous blood sample was taken to determine the plasma lactate concentration ([la]p, 3min). Lactate concentration and maximal heart rate (f c, max) were lower in the women than in the men (P<0.001). Multiple regression analyses were performed to assess the contribution of sex to [la]p, 3 min, independent of age and f c max, It was found that [la]p,3 min was about 2.5 mmol·l–1 lower in women than in men of the same age and f c, max. In our population 88% of the men and 85% of the women met a combination of the following f c, max and [la]p, 3min criteria: f c, max equal to or greater than 220 minus age beats·min–1 and/or [la]p, 3min equal to or greater than 8 mmol·l–1 in the men and f c, max equal to or greater than 220 minus age beats·min–1 and/or [la]p, 3min equal to or greater than 5.5 mmol·1–1 in the women.  相似文献   

2.
Whether the use of pre-exercise hyperhydration could improve the performance of athletes who do not hydrate sufficiently during prolonged exercise is still unknown. We therefore compared the effects of pre-exercise hyperhydration and pre-exercise euhydration on endurance capacity, peak power output and selected components of the cardiovascular and thermoregulatory systems during prolonged cycling. Using a randomized, crossover experimental design, 6 endurance-trained subjects underwent a pre-exercise hyperhydration (26 ml of water x kg body mass(-1) with 1.2 g glycerol x kg body mass(-1)) or pre-exercise euhydration period of 80 min, followed by 2 h of cycling at 65% maximal oxygen consumption (VO(.)2max) (26-27 degrees C) that were interspersed by 5, 2-min intervals performed at 80% V(.)O2max. Following the 2 h cycling exercise, subjects underwent an incremental cycling test to exhaustion. Pre-exercise hyperhydration increased body water by 16.1+/-2.2 ml.kg body mass(-1). During exercise, subjects received 12.5 ml of sports drink x kg body mass(-1). With pre-exercise hyperhydration and pre-exercise euhydration, respectively, fluid ingestion during exercise replaced 31.0+/-2.9% and 37.1+/-6.8% of sweat losses (p>0.05). Body mass loss at the end of exercise reached 1.7+/-0.3% with pre-exercise hyperhydration and 3.3+/-0.4% with pre-exercise euhydration (p<0.05). During the 2 h of cycling, pre-exercise hyperhydration significantly decreased heart rate and perceived thirst, but rectal temperature, sweat rate, perceived exertion and perceived heat-stress did not differ between conditions. Pre-exercise hyperhydration significantly increased time to exhaustion and peak power output, compared with pre-exercise euhydration. We conclude that pre-exercise hyperhydration improves endurance capacity and peak power output and decreases heart rate and thirst sensation, but does not reduce rectal temperature during 2 h of moderate to intense cycling in a moderate environment when fluid consumption is 33% of sweat losses.  相似文献   

3.
We investigated the effect of endurance training on whole body substrate, glucose, and glycerol utilization during 90 min of exercise at 60% peak O2 consumption (VO2(peak)) in males and females. Substrate oxidation was determined before and after 7 wk of endurance training on a cycle ergometer, with posttesting performed at the same absolute (ABS, W) and relative (REL, VO2(peak)) intensities. [6,6-2H]glucose and [1,1,2,3,3-2H]glycerol tracers were used to calculate the respective substrate tracee flux. Endurance training resulted in an increase in VO2(peak) for both males and females of 17 and 22%, respectively (P < 0.001). Females demonstrated a lower respiratory exchange ratio (RER) both pretraining and posttraining compared with males during exercise (P < 0.001). Glucose rate of appearance (R(a)) and rate of disappearance (R(d)) were not different between males and females. Glucose metabolic clearance rate (MCR) was lower at 75 and 90 min of exercise for females compared with males (P < 0.05). Glucose R(a) and R(d) were lower during exercise at both ABS and REL posttraining exercise intensities compared with pretraining (P < 0.001). Females had a higher exercise glycerol R(a) and R(d) compared with males both pre- and posttraining (P < 0.001). Glycerol R(a) was not different at either the ABS or REL posttraining exercise intensities compared with pretraining. We concluded that females oxidize proportionately more lipid and less carbohydrate during exercise compared with males both pre- and posttraining, which was cotemporal with a higher glycerol R(a) in females. Furthermore, endurance training resulted in a decrease in glucose flux at both ABS and REL exercise intensities after endurance exercise training.  相似文献   

4.
5.
To study the transcapillary fluid movements in the human lower limb in the upright body position and during muscle exercise, the slow changes in thigh and calf volumes were measured by mercury-in-rubber-strain gauge plethysmography. Measurements were carried out on 20 healthy volunteers while sitting, standing and doing cycle ergometer exercise at intensities of 50 and 100-W. A plethysmographic recording of slow extravascular volume changes during muscle exercise was possible because movement artefacts were eliminated by low-pass filtering. While standing and sitting the volumes of both thigh and calf increased due to enhanced transcapillary filtration. While standing the mean rate of increase was 0.13%.min-1 in the calf and 0.09%.min-1 in the thigh. During cycle ergometer exercise at 50 and 100 W, the calf volume decreased with a mean rate of -0.09.min-1. In contrast, the thigh volume did not change significantly during exercise at 50 W and increased at 100 W. Most of the increase occurred during the first half of the experimental period i.e. between min 2 and 12, amounting to +0.6%. Thus, simultaneous measurements revealed opposite changes in the thigh and calf. This demonstrates that the conflicting findings reported in the literature may have occurred because opposite changes can occur in different muscle groups of the working limb at the same time. Lowered venous pressure, increased lymph flow and increased tissue pressure in the contracting muscle are considered to have caused the reduction in calf volume during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Turley, Kenneth R., and Jack H. Wilmore. Cardiovascularresponses to treadmill and cycle ergometer exercise in children andadults. J. Appl. Physiol. 83(3):948-957, 1997.This study was conducted to determine whethersubmaximal cardiovascular responses at a given rate of work aredifferent in children and adults, and, if different, what mechanismsare involved and whether the differences are exercise-modalitydependent. A total of 24 children, 7 to 9 yr old, and 24 adults, 18 to26 yr old (12 males and 12 females in each group), participated in bothsubmaximal and maximal exercise tests on both the treadmill and cycleergometer. With the use of regression analysis, it was determined thatcardiac output () was significantly lower(P  0.05) at a givenO2 consumption level(O2, l/min) in boys vs. menand in girls vs. women on both the treadmill and cycle ergometer. Thelower in the children was compensated for by asignificantly higher (P  0.05)arterial-mixed venous O2difference to achieve the same or similarO2. Furthermore, heart rateand total peripheral resistance were higher and stroke volume was lowerin the children vs. in the adult groups on both exercise modalities.Stroke volume at a given rate of work was closely related to leftventricular mass, with correlation coefficients ranging fromr = 0.89-0.92 andr = 0.88-0.93 in the males and females, respectively. It was concluded that submaximal cardiovascular responses are different in children and adults and that these differences are related to smaller hearts and a smaller absolute amountof muscle doing a given rate of work in the children. The differenceswere not exercise-modality dependent.

  相似文献   

7.
8.
Declines in muscular strength resulting from reduced neural activity may influence the reduction in aerobic capacity in older men. However, there has been little investigation into the relationship between muscular strength and economy of movement during aerobic exercise in elderly subjects. Thus, the purpose of this study was to investigate the possible relationship between strength, aerobic performance, and neuromuscular economy in older men. Twenty-eight aged men (65 ± 4 years old) were evaluated in dynamic (1 repetition maximum test), isometric strength (maximal voluntary contraction), and rate of force development. Peak oxygen uptake, maximal workload, and ventilatory threshold were determined during a ramp protocol on a cycle ergometer. Throughout the same protocol, the neuromuscular economy (electromyographic signal) of the vastus lateralis was measured. Significant correlations were found between muscular strength, cardiorespiratory fitness, and neuromuscular economy (r = 0.43-0.64, p < 0.05). Our results suggest that cardiorespiratory capacity and economy of movement are associated with muscular strength during aging.  相似文献   

9.
This study examined the torque-velocity and power-velocity relationships of quadriceps muscle function, stretch shortening cycle function, and leg-spring stiffness in sprint and endurance athletes. Isokinetic maximal knee extension torque was obtained from 7 sprinters and 7 endurance athletes using a Con-trex isokinetic dynamometer. Torque and power measures were corrected for lean-thigh cross-sectional area and lean-thigh volume, respectively. Stretch-shortening cycle function and muscle stiffness measurements were obtained while subjects performed single-legged squat, countermovement, and drop-rebound jumps on an inclined sledge and force-plate apparatus. The results indicated that sprinters generated, on average, 0.15 +/- 0.05 N.m.cm(-2) more torque across all velocities compared with endurance athletes. Significant differences were also found in the power-velocity relationships between the 2 groups. The sprinters performed significantly better than the endurance athletes on all jumps, but there were no differences in prestretch augmentation between the groups. The average vertical leg stiffness during drop jumps was significantly higher for sprinters (5.86 N.m(-1)) compared with endurance runners (3.38 N.m(-1)). The findings reinforce the need for power training to be carried out at fast contraction speeds but also show that SSC function remains important in endurance running.  相似文献   

10.
Seven healthy young women, 3 whom had been taking oral contraceptives, were examined during the course of 2 menstrual cycles to assess their isometric strength, their endurance during a series of 5 fatiguing isometric contractions at a tension of 40% MVC, and their blood pressures and heart rates during those fatiguing contractions. Two sets of experiments were performed, one in which the subject's forearm temperature was allowed to vary as a function of T A, and one with the muscle temperature stabilized by immersion of the forearm in water at 37 degrees C. During exposure to ambient temperatures, isometric strength and both the heart rate and blood pressure responses at rest and at the end of a fatiguing, sustained isometric exercise, were not significantly different during any phase of the menstrual cycle in any subject. In contrast, the isometric endurance in the women not taking oral contraceptives varied sinusoidally in all 5 contractions with a peak endurance midway through the ovulatory phase and the lowest endurance mid-way through the luteal phase of the menstrual cycle. The isometric endurance of the women taking oral contraceptives did not vary during their menstrual cycle. After stabilization of the temperature of the muscles of the forearm in water at 37 degrees C, the isometric endurance of the normal subjects showed a hyperbolic response with the maximal endurance at the beginning and end of their cycles, and the shortest endurance at mid-cycle. Here again, however, the isometric endurance of the women taking oral contraceptives did not vary after immersion of their forearms in the 37 degree C water.  相似文献   

11.
In order to examine thermoregulatory response to creatine (CR) supplementation, competitive male cyclists and triathletes (n = 7, VO2max = 50.6 +/- 0.8 ml x kg(-1) x min(-1)) completed three 1-hour hyperthermic (ambient temperature = 38.7 +/- 1.0 degrees C, relative humidity = 33 +/- 4%) exercise sessions at 181 +/- 12 W (50% of Wmax, approximately 66% of VO2max). Subjects completed a baseline (BL) session, then 2 sessions following 5 days of CR (20 g x d(-1)) and placebo (PL, 20 g x d(-1)) administered in a double-blind counterbalanced crossover manner with > or = 28-day washout. Pre-exercise BL, CR, and PL body mass were unchanged, with similar decreases in postexercise mass among the three conditions. Tympanic temperature, heart rate, systolic blood pressure, perceived exertion, and lactate, cortisol, and aldosterone concentrations increased similarly during BL, CR, and PL exercise. A greater (p = 0.013) estimated decrease in plasma volume occurred following BL (-16.5 +/- 2.0%) and PL (-17.6 +/- 1.7%) exercise compared to CR (-13.5 +/- 2.1%). Creatine supplementation reduces plasma volume loss during 1 hour of hyperthermic exercise but does not appear to otherwise change thermoregulatory response to hyperthermic exercise.  相似文献   

12.
13.
14.
Gender differences in the changes substrates of carbohydrate and lipid metabolism as well as in adrenaline, noradrenaline, growth hormone, insulin and cortisol were investigated in 24 women and 24 men during exhaustive endurance exercise. Training history and current performance capacity were taken into consideration in the design of the study. Since previous papers present conflicting results the purpose of the present study was to obtain further information regarding possible gender differences in lipid metabolism and its regulation by hormones. Non-endurance-trained women and men each ran 10 km on a treadmill at an intensity of 75% of VO2max; endurance-trained women and men ran 14 and 17 km, respectively, at an intensity of 80% of VO2max. Blood glucose levels in non-endurance-trained women were higher when compared to non-endurance-trained men. This might be explained by increased mobilization of free fatty acids from intramuscular fat depots during energy production in non-specifically trained women. In contrast, no substantial gender differences in endurance-trained persons were seen in lipid metabolism. The changes in substrates of lipid metabolism confirm the higher lipolytic activity and greater utilization of free fatty acids in endurance-trained persons. During endurance exercise, changes in adrenaline, noradrenaline, growth hormone, insulin and cortisol were not substantially affected by the sex of the subjects. This study does not present any conclusive results that endurance-trained persons show gender differences in lipid metabolism and major regulatory hormones.  相似文献   

15.
16.
The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   

17.
This study compared the body water turnover in endurance athletes and age-matched sedentary men. Eight competitive endurance athletes (20.8+/-1.9 yr) and age-matched eight sedentary men (21.6+/-2.5 yr) participated in this study. Total body water and body water turnover were measured using the deuterium (D(2)O) dilution technique. Urine samples were obtained every day for 10 days after oral administration of D(2)O. The day-by-day concentrations were used to calculate the biological half-life of D(2)O and body water turnover. Maximal oxygen uptake (VO(2max)) and oxygen uptake corresponding to ventilatory threshold (VO(2VT)) as an index of aerobic capacity were determined during a graded exercise test. Both VO(2max) and VO(2VT) were higher in the exercise group than in the sedentary group (P<0.05). The biological half-life of D(2)O was significantly shorter in the exercise group than in the sedentary group (5.89+/-0.81 days vs. 7.52+/-0.77 days, P<0.05), and the percentage of the body water turnover was significantly higher in the exercise group than in the sedentary group (11.99+/-1.96% vs. 9.39+/-1.21%, P<0.05). The body water turnover was correlated with VO(2max) and VO(2VT), respectively (P<0.05). Based on these findings, this study speculates that a level of physical activity may induce a body water turnover higher in the healthy state, since the better trained subjects have a higher body water turnover.  相似文献   

18.
We determined the independent and interactive influences of aging and habitual endurance exercise on calf venous compliance in humans. We tested the hypotheses that calf venous compliance is 1) reduced with age in sedentary and endurance-trained men, and 2) elevated in young and older endurance-trained compared with age-matched sedentary men. We studied 8 young (28 +/- 1 yr) and 8 older (65 +/- 1) sedentary, and 8 young (27 +/- 1) and 8 older (63 +/- 2) endurance-trained men. Calf venous compliance was measured in supine subjects by inflating a venous collecting cuff, placed above the knee, to 60 mmHg for 8 min and then decreasing cuff pressure at 1 mmHg/s to 0 mmHg. Calf venous compliance was determined using the first derivative of the pressure-volume relation during cuff pressure reduction (compliance = beta(1) + 2. beta(2). cuff pressure). Calf venous compliance was reduced with age in sedentary (approximately 40%) and endurance-trained men (approximately 20%) (both P < 0.01). Furthermore, calf venous compliance was approximately 70-120% greater in endurance-trained compared with age-matched sedentary men and approximately 30% greater in older endurance-trained compared with young sedentary men (both P < 0.01). These data indicate that calf venous compliance is reduced with age in sedentary and endurance-trained men, but compliance is better preserved in endurance-trained men.  相似文献   

19.
20.
The purpose was to compare the time to task failure for a sustained isometric contraction performed at a submaximal intensity with the elbow flexor muscles by young and old men who were matched for strength. Eight young men (18-31 yr) and eight old men (67-76 yr) sustained an isometric contraction at 20% of maximal voluntary contraction (MVC) torque until the target torque could no longer be achieved for at least 5 s. The maximal torque exerted at the wrist was similar for the young and old men before the fatiguing task (65.9 +/- 8.0 vs. 65.4 +/- 8.7 N x m; P > 0.05), and they experienced similar reductions in MVC torque after the fatiguing contraction (31.4 +/- 10.6%; P < 0.05). The time to task failure was longer for the old men (22.6 +/- 7.4 min) compared with the strength-matched young men (13.0 +/- 5.2 min; P < 0.05), despite each group sustaining a similar torque during the fatiguing contraction (P > 0.05). The increases in torque fluctuations, electromyographic (EMG) bursting activity, and heart rate were greater for young men compared with the old men, and they were less at task failure for the old men (P < 0.05). Mean arterial pressure increased at a similar rate for both groups of men (P > 0.05), whereas the averaged EMG activity and rating of perceived exertion reached similar values at task failure for the young and old men (P > 0.05). These findings indicate that the longer time to task failure for the old men when performing the submaximal contraction was not due the absolute target torque exerted during the contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号