首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation during movement in and out of the bore, we argue these are less likely.  相似文献   

2.
3.
Autoradiographic evidence for incorporation of 3H-glucose and 35S-sulfate into the cupulae of Xenopus laevis (African clawed toad) lateral line organs was obtained after injection into the dorsal lymph sacs of adult animals. Time intervals of 15 minutes to 4 hours after administration of these labeled metabolic precursors were used to examine the time course of the apparent mechanism of growth of the cupulae. Our results suggest that the two layers of accessory cells (the sustentacular cells and inner layer of mantle cells), concentrically arranged around the organ's central sensory (hair) cells, elaborate distinct cupular components. Sustentacular cells, immediately adjacent to the sensory cells, appear to produce and extrude at their exposed apices a cupular "core" substance labeled by 3H-glucose, but not by 35S-sulfate. The layer of inner mantle cells, external to the sustentacular cells, was labeled by both precursors and is spatially situated to secrete a cupular sheath enclosing the cupular core. Ultrastructural differences between the secretory products within the two cell types were marked. Electron microscopic autoradiography of toads killed 4 hours after 3H-glucose injection showed that silver grains were associated with accumulations of the respective secretory products in sustentacular and inner mantle cells, and label was found over the cupular trough area, where the bases of the cupulae are attached. These results suggest that the cupular core and sheath may both contain mucopolysaccharide, and the sheath, a sulfated mucopolysaccharide.  相似文献   

4.
The deflection of the sensory hairs produced by a given volumetric displacement of endolymph (ΔV) is compared in the two usually-accepted models of the cupula behavior: the watertight hinged flap and the elastic diaphragm. Developing the mathematics of these two models, it appears that the elastic diaphragm engenders a larger deflection of sensory hairs than the hinged flap, the difference being about twice in magnitude. Whatever the model, the angle of the cupular deflection is always proportional to the relative angular displacement of the endolymph during natural stimulations.  相似文献   

5.
Myasthenia gravis has variable effects on the respiratory system, ranging from no abnormalities to life-threatening respiratory failure. Studies characterized diaphragm muscle contractile performance in rat autoimmune myasthenia gravis. Rats received monoclonal antibody that recognizes acetylcholine receptor determinants (or inactive antibody); 3 days later, phrenic nerve and diaphragm were studied in vitro. Myasthenic rats segregated into two groups, those with normal vs. impaired limb muscle function when tested in intact animals ("mild" and "severe" myasthenic). Baseline diaphragm twitch force was reduced for both severe (P < 0.01) and mild (P < 0.05) myasthenic compared with control animals (twitch force: normal 1,352 +/- 140, mild myasthenic 672 +/- 99, severe myasthenic 687 +/- 74 g/cm2). However, only severe myasthenic diaphragm had impaired diaphragm endurance, based on significantly (P < 0.05) accelerated rate of peak force decline during the initial period of stimulation (0.02 + 0.02, 0.03 +/- 0.01, and 0.09 +/- 0.01%/pulse for normal, mild myasthenic, and severe myasthenic, respectively, during continuous stimulation) and intratrain fatigue (up to 30.5 +/- 7.4% intratrain force drop in severe myasthenic vs. none in normal and mild myasthenic, P < 0.01). Furthermore, compared with continuous stimulation, intermittent stimulation had a protective effect on force of severe myasthenic diaphragm (force after 2,000 pulses was 31.4 +/- 2.0% of initial during intermittent stimulation vs. 13.0 +/- 2.1% of initial during continuous stimulation, P < 0.01) but not on normal diaphragm. These data indicate that baseline force and fatigue may be affected to different extents by varying severity of myasthenia gravis and furthermore provide a mechanism by which alterations in breathing pattern may worsen respiratory muscle function in neuromuscular diseases.  相似文献   

6.
The two equilibrium receptor organs (statocysts) of Nautilus are avoid sacks, half-filled with numerous small, free-moving statoconia and half with endolymph. The inner surface of each statocyst is lined with 130,000-150,000 primary sensory hair cells. The hair cells are of two morphological types. Type A hair cells carry 10-15 kinocilia arranged in a single ciliary row; they are present in the ventral half of the statocyst. Type B hair cells carry 8-10 irregularly arranged kinocilia; they are present in the dorsal half of the statocyst. Both type of hair cells are morphologically polarized. To test whether these features allow the Nautilus statocyst to sense angular accelerations, behavioural experiments were performed to measure statocyst-dependent funnel movements during sinusoidal oscillations of restrained Nautilus around a vertical body axis. Such dynamic rotatory stimulation caused horizontal phase-locked movements of the funnel. The funnel movements were either in the same direction (compensatory funnel response), or in the opposite direction (funnel follow response) to that of the applied rotation. Compensatory funnel movements were also seen during optokinetic stimulation (with a black and white stripe pattern) and during stimulations in which optokinetic and statocyst stimulations were combined. These morphological and behavioural findings show that the statocysts of Nautilus, in addition to their function as gravity receptor organs, are able to detect rotatory movements (angular accelerations) without the specialized receptor systems (crista/cupula systems) that are found in the statocysts of coleoid cephalopods. The findings further indicate that both statocyst and visual inputs control compensatory funnel movements.  相似文献   

7.
We have made several improvements in the method of fixation of the inner ear and the enzyme-histochemical technique for carbonic anhydrase (CA) detection. The results confirmed that CA is localized in the hair cells of the organ of Corti, Deiters' cells or nerve endings, inner pillar cells, Boettcher's cells, stria vascularis, spiral ligament, spiral limbus, and spiral ganglion cells. These results generally agree with previous histochemical observations but showed some differences. Our method preserved tissue morphology and showed more detailed localization of CA activity in the inner ear. In particular, the marginal zone of stria vascularis and the epithelial cells of spiral prominence, facing the endolymph, showed no CA activity, while the suprastrial region of the spiral ligament and the supralimbal region of the spiral limbus, juxtaposed to the perilymph, showed CA activity. In outer hair cells, the cuticular plate, which faces the endolymph showed CA activity, but the lateral membrane, which faces the perilymph showed no CA activity. In contrast, the inner hair cell cytoplasm showed diffuse CA activity. These results will be useful in considering ion exchange between endolymph and its adjacent cells, and between perilymph and its adjacent structures.  相似文献   

8.
The identification of deafness genes helped to unravel the molecular mechanisms of ion movements that underlie the hearing process in the inner ear. Sound waves cause movements of the tympanic membrane that are transmitted as fluid movements to the inner ear by the middle ear bones. The sound-induced movements deflect hair cell stereocilia, which are bathed in endolymph. These movements cause the opening of mechanosensitive ion channels. Because of the high potassium concentration of the endolymph, potassium floods into the hair cells, which then depolarize. This results in transmitter release and the generation of postsynaptic electrical signals which are transmitted via the cochlear nerve. The unique ion gradient between hair cells and the endolymph is generated by a highly specialized epithelium in the lateral wall of the scala media, the stria vascularis.  相似文献   

9.
Summary Individuals of seven species of coleoid cephalopods (three species of octopus, three of squid, and one of cuttlefish), that were cultured and reared in laboratory aquarium systems, had a behavioral defect at hatching which was characterized by an inability to control orientation while swimming. These defective animals were designated as spinners.An examination of statocysts from individuals of five of the affected species revealed abnormalities of the neuroepithelial suprastructures: absence or malformation of the statolith of the gravity receptor system and absence of the cupulae of the angular acceleration receptor systems. The sensory epithelia did not differ from those of normal animals, nor did the synaptic structures and relationships, when examined both with scanning and transmission electron microscopy. The abnormalities were compared with congenital defects of the neuropeithelial suprastructures of the vestibular apparatus (especially in mammals). The defects observed in statocysts of spinner animals are thought to be the result of environmental causes, such as the temperature or chemistry of the seawater in the transportation vessels or rearing systems, rather than genetic causes.  相似文献   

10.
The semicircular ducts in pigeons were stimulated either in an isolated way (the angular acceleration being 10 degrees/c2) or together with the otolith organs (the peak value of the interaural acceleration being 0.5 g). In one and the same situation, both the inhibitory and the activating otolith effects on nystagmus were found. In one and the same animal, changes of the postoptokinetic and canal nystagmuses could be qualitatively different. The results obtained contradict the hypothesis of changes in the "velocity accumulator" time constants as the only cause of changes in the postoptokinetic and rotatory nystagmuses under conditions of low-frequency otolith stimulation.  相似文献   

11.
Summary Intracellular recordings were obtained from the hair cells and afferent neurones of the angular acceleration receptor system of the statocyst of the squid,Alloteuthis subulata. Electrical stimulation of the efferent fibres in the crista nerve (minor) evoked responses in all of the secondary hair cells recorded from (n=211). 48% of the secondary air cells responded with a small depolarization, 15% with a hyperpolarization, and 37% with a depolarization followed by a hyperpolarization. The depolarizations and hyperpolarizations had mean stimulus to response delays of 6.7 ms and 24 ms, and reversal potentials of about –1 mV and –64 mV, respectively. Both types of potential increased in amplitude, up to a point, when the stimulus shock was increased and facilitation and/or summation effects could be obtained by applying multiple shocks. These data, together with the fact that both responses could be blocked by bath application of cobalt or cadmium, indicate that the secondary hair cells receive both inhibitory and excitatory efferent inputs and that these are probably mediated via chemical synapses. No efferent responses were seen in the primary hair cells but both depolarizing and hyperpolarizing efferent responses were obtained from the afferent neurones.  相似文献   

12.
Hair cells of the inner ear can power spontaneous oscillations of their mechanosensory hair bundle, resulting in amplification of weak inputs near the characteristic frequency of oscillation. Recently, dynamic force measurements have revealed that delayed gating of the mechanosensitive ion channels responsible for mechanoelectrical transduction produces a friction force on the hair bundle. The significance of this intrinsic source of dissipation for the dynamical process underlying active hair-bundle motility has remained elusive. The aim of this work is to determine the role of friction in spontaneous hair-bundle oscillations. To this end, we characterized key oscillation properties over a large ensemble of individual hair cells and measured how viscosity of the endolymph that bathes the hair bundles affects these properties. We found that hair-bundle movements were too slow to be impeded by viscous drag only. Moreover, the oscillation frequency was only marginally affected by increasing endolymph viscosity by up to 30-fold. Stochastic simulations could capture the observed behaviors by adding a contribution to friction that was 3?8-fold larger than viscous drag. The extra friction could be attributed to delayed changes in tip-link tension as the result of the finite activation kinetics of the transduction channels. We exploited our analysis of hair-bundle dynamics to infer the channel activation time, which was ~1 ms. This timescale was two orders-of-magnitude shorter than the oscillation period. However, because the channel activation time was significantly longer than the timescale of mechanical relaxation of the hair bundle, channel kinetics affected hair-bundle dynamics. Our results suggest that friction from channel gating affects the waveform of oscillation and that the channel activation time can tune the characteristic frequency of the hair cell. We conclude that the kinetics of transduction channels’ gating plays a fundamental role in the dynamic process that shapes spontaneous hair-bundle oscillations.  相似文献   

13.
目的:考察利用新疆维吾尔族传统药物研制成的"一枝好"育发液促进毛发生长的效果,并探讨其可能的作用机制。方法:采用硫化钠溶液建立昆明小鼠化学性脱发实验模型,将30只昆明小鼠随机分为实验组、阳性对照组(章光101育发剂)、空白对照组,以毛发评分、毛长、毛重以及毛囊数为指标,考察小鼠新生毛发生长情况。对脱毛后21天的脱毛区皮肤毛长、毛重、毛囊数进行测量和统计分析。并利用MTT法初步探讨"一枝好"育发液对人脐静脉血管内皮细胞(HUVEC)增殖的影响。结果:实验组脱毛区体毛生长评分及毛长,与空白对照组差异显著,并且略高于阳性对照组。对小鼠毛重与毛囊数的统计结果显示,与空白对照组和阳性对照组相比,实验组均有显著性差异(P0.01,P0.001)。"一枝好"育发液能够促进人脐静脉血管内皮细胞(HUVEC)增殖。结论:利用新疆维吾尔族传统药物研制成的"一枝好"育发液,能够显著促进小鼠毛发生长,初步推断其作用机制与促进毛囊生长和促进血管内皮细胞增殖有关。  相似文献   

14.
15.

Background and Objective

The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing.

Methods

P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation.

Results

P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values.

Conclusion

Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.  相似文献   

16.
Role of phrenic nerve afferents in the control of breathing   总被引:1,自引:0,他引:1  
A long-held belief is that respiratory-related reflexes mediated by afferents in the diaphragm are weak or absent. However, recent data suggest that diaphragmatic afferents are capable of altering ventilatory motor drive as well as influencing perception of added inspiratory loads in humans. This review describes the sensory elements of the diaphragm, their central projections, and their functional significance in the control of respiratory muscle activation. The reflexes elicited by electrical stimulation of phrenic nerve afferents and the contribution of diaphragmatic afferents in respiratory load compensation and perception are considered. There is growing evidence that phrenic nerve afferents are activated under a variety of conditions. However, the significance of this input to the central nervous system is yet to be discerned.  相似文献   

17.
Ca(2+) acts as a fundamental signal transduction element in inner ear, delivering information about sound, acceleration and gravity through a small number of mechanotransduction channels in the hair cell stereocilia and voltage activated Ca(2+) channels at the ribbon synapse, where it drives neurotransmission. The mechanotransduction process relies on the endocochlear potential, an electrical potential difference between endolymph and perilymph, the two fluids bathing respectively the apical and basolateral membrane of the cells in the organ of Corti. In mouse models, deafness and lack or reduction of the endocochlear potential correlate with ablation of connexin (Cx) 26 or 30. These Cxs form heteromeric channels assembled in a network of gap junction plaques connecting the supporting and epithelial cells of the organ of Corti presumably for K(+) recycle and transfer of key metabolites, for example, the Ca(2+) -mobilizing second messenger IP(3) . Ca(2+) signaling in these cells could play a crucial role in regulating Cx expression and function. Another district where Ca(2+) signaling alterations link to hearing loss is hair cell apex, where ablation or missense mutations of the PMCA2 Ca(2+) -pump of the stereocilia cause deafness and loss of balance. If less Ca(2+) is exported from the stereocilia, as in the PMCA2 mouse mutants, Ca(2+) concentration in endolymph is expected to fall causing an alteration of the mechanotransduction process. This may provide a clue as to why, in some cases, PMCA2 mutations potentiated the deafness phenotype induced by coexisting mutations of cadherin-23 (Usher syndrome type 1D), a single pass membrane Ca(2+) binding protein that is abundantly expressed in the stereocilia.  相似文献   

18.
Aminoglycosides (AG) are commonly prescribed antibiotics with potent bactericidal activities. One main side effect is permanent sensorineural hearing loss, induced by selective inner ear sensory hair cell death. Much work has focused on AG's initiating cell death processes, however, fewer studies exist defining mechanisms of AG uptake by hair cells. The current study investigated two proposed mechanisms of AG transport in mammalian hair cells: mechanotransducer (MET) channels and endocytosis. To study these two mechanisms, rat cochlear explants were cultured as whole organs in gentamicin-containing media. Two-photon imaging of Texas Red conjugated gentamicin (GTTR) uptake into live hair cells was rapid and selective. Hypocalcemia, which increases the open probability of MET channels, increased AG entry into hair cells. Three blockers of MET channels (curare, quinine, and amiloride) significantly reduced GTTR uptake, whereas the endocytosis inhibitor concanavalin A did not. Dynosore quenched the fluorescence of GTTR and could not be tested. Pharmacologic blockade of MET channels with curare or quinine, but not concanavalin A or dynosore, prevented hair cell loss when challenged with gentamicin for up to 96 hours. Taken together, data indicate that the patency of MET channels mediated AG entry into hair cells and its toxicity. Results suggest that limiting permeation of AGs through MET channel or preventing their entry into endolymph are potential therapeutic targets for preventing hair cell death and hearing loss.  相似文献   

19.
20.
Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号