首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Oami K  Takahashi M 《Zoological science》2004,21(11):1091-1097
The membrane potential responses of Paramecium caudatum to Na+ ions were examined to understand the mechanisms underlying the sensation of external inorganic ions in the ciliate by comparing the responses of the wild type and the behavioral mutant. Wild-type cells exhibited initial continuous backward swimming followed by repeated transient backward swimming in the Na+-containing test solution. A wild-type cell impaled by a microelectrode produced initial action potentials and a sustained depolarization to an application of the test solution. The prolonged depolarization, the depolarizing afterpotential, took place subsequently after stimulation. The ciliary reversal of the cell was closely associated with the depolarizing responses. When the application of the test solution was prolonged, the wild-type cell produced sustained depolarization overlapped by repeated transient depolarization. A behavioral mutant defective in the Ca2+ channel, CNR (caudatum non reversal), produced a sustained depolarization but no action potential or depolarizing afterpotential. The mutant cell responded to prolonged stimulation with sustained depolarization overlapped by transient depolarization, although it did not show backward swimming. The results suggest that Paramecium shows at least two kinds of membrane potential responses to Na+ ions: a depolarizing afterpotential mediating initial backward swimming and repeated transient depolarization responsible for the repeated transient backward swimming.  相似文献   

2.
In Paramecium, internal Ca(2+) concentration increase coupled to membrane depolarization induces a reversal in the direction of ciliary beating and, consequently, a reversal in swimming direction. The ciliary reversal (CR) duration is correlated to Ca(2+) influx, and the addition of drugs that block the Ca(2+) current leads to a reduction in the backward swimming duration. In this study we have examined the possible function of GABA(B) receptors in P. primaurelia swimming control. The presence of GABA(B) immunoanalogue in Paramecium was evidenced using SDS-PAGE, Western blotting, and confocal laser scanning microscopy. By applying the specific GABA(B) receptor agonist baclofen, a dose-dependent inhibition of the membrane depolarization-induced CR duration was observed. This inhibition was antagonized by phaclofen, persisted when K(+) channel blockers were applied, and disappeared after treatment with nifedipine and verapamil. Moreover, the action of baclofen on depolarization-induced CR was suppressed by treatment with pertussis toxin. Therefore, these experiments suggest that baclofen modulates CR by a G protein (G(0) or G(1)) mediated inhibition of dihydropyridine-sensible calcium channels. Finally, synthesis and release of GABA in the environment by Paramecium have been demonstrated by HPLC. Possible correlations between GABA(B) receptor activation and the regulation of intracellular Ca(2+) levels are discussed.  相似文献   

3.
Different species of ciliates (Paramecium biaurelia, Loxodes striatus, Tetrahymena thermophila) have been taken as model systems to study the effects of extremely low-frequency electromagnetic fields (50 Hz, 0.5–2.0 mT) on the cellular level. A dose-dependent increase in the mean swimming velocity and a decrease in the linearity of cell tracks were observed in all wild-type cells. In contrast, field-exposure did not increase the number of directional turns of the Paramecium tetraurelia pawn mutant (d4–500r), which is characterized by defective Ca2+-channels. The described changes indicate a direct effect of low frequency electromagnetic fields on the transport mechanisms of the cell membrane for ions controlling the motile activity of cilia. Bioelectromagnetics 18:491–498, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
A cell culture of Paramecium with a precise negative gravitaxis was exposed to 4 x l0(-6) g during a parabolic flight of a sounding rocket for 6 min. Computer image analysis revealed that without gravity stimulus the individual swimming paths remained straight. In addition, three reactions could be distinguished. For about 30 s, paramecia maintained the swimming direction they had before onset of low gravity. During the next 20 s, an approximate reversal of the swimming direction occurred. This period was followed by the expected random swimming pattern. Similar behavior was observed under the condition of simulated weightlessness on a fast-rotating clinostat. Control experiments on the ground under hyper-gravity on a low-speed centrifuge microscope and on a vibration test facility proved that the observed effects were caused exclusively by the reduction of gravity.  相似文献   

5.
S Klumpp  P Cohen    J E Schultz 《The EMBO journal》1990,9(3):685-689
Backward swimming is a stereotypic behavioural response of Paramecium. It is triggered by depolarizing stimuli, which open calcium channels in the excitable ciliary membrane. The influx of Ca2+ causes the reversal of ciliary beat and initiates backward swimming. Here, we demonstrate that the protein phosphatase inhibitor okadaic acid does not affect the normal forward swimming pattern of Paramecium, but greatly extends the duration of backward swimming as initiated by depolarization caused by a rise in extracellular K+. Chelation of external Ca2+ results in an immediate resumption of forward swimming. The results suggest that the voltage-operated calcium channel is inactivated by a dephosphorylation event, and that okadaic acid blocks this dephosphorylation without any effect on the motile apparatus of the cilia. In addition, Paramecium is unique among eukaryotic cells, in that okadaic acid inhibits just one protein phosphatase, namely a type 1 enzyme, 75% of which is tightly associated with the excitable ciliary membrane. The type 2A protein phosphatases in Paramecium are unaffected by okadaic acid. The results indicate that protein phosphatase 1 is the enzyme responsible for the dephosphorylation and closure of the calcium channel in Paramecium.  相似文献   

6.
Paramecium multimicronucleatum was used as a model cell to study the effects of 60 Hz magnetic fields on swimming behavior. When exposed to a vertical field of 0.6 T, the cells accumulated at the upper end of the cuvette. An analysis of the swimming behavior revealed that the exposure to the field increased the number of cells swimming upwards maximally at 1 min after onset of the exposure. This effect of the magnetic field was transient, disappearing within a few minutes during the exposure. It is suggested that the magnetic field may amplify to a large extent the negative gravitaxis of Paramecium. Effects of an induced electric field on the swimming behavior are also discussed.  相似文献   

7.
This paper presents evidence that the negative geotactic behavior of Paramecium caudatum takes place by the mechanism of buoyancy-oriented upward swimming. Photographs of swimming pathways of the organisms were completely described by two dynamic equations for the translational motion of the center of gravity of the organism's body and for the rotational motion of the organism's body about its center of gravity, where the rotational torque is induced by a slight difference in position between the center of gravity and the center of buoyancy. It now seems unlikely that complicated mechanisms such as the statocyst mechanism and the gravity-propulsion mechanism, which have been proposed by many investigators, need be considered for other protozoa since preliminary observation and analysis of other ciliates such as Paramecium multimicronucleatum, Paramecium tetraurelia, and Tetrahymena pyriformis also strongly suggested that their negative geotaxis is due to buoyancy-oriented upward swimming.  相似文献   

8.
The swimming behavior of many ciliate protozoans depends on graded changes in the direction of the ciliary effective stroke in response to depolarizing stimuli (i.e., the avoiding reaction of Paramecium). We investigated the problem of whether the directional response of cilia with a variable plane of beat is related to the polarity of the cell as a whole or to the orientation of the cortical structures themselves. To do this, we used a stock of Paramecium aurelia with part of the cortex reversed 180 degrees. We determined the relation of the orientation of the kineties (ciliary rows) to the direction of beat in these mosaic paramecia by cinemicrography of particle movements near living cells and by scanning electron microscopy of instantaneously fixed material. We found that the cilia of the inverted rows always beat in the direction opposite to that of normally oriented cilia during both forward and backward swimming. In addition, metachronal waves of ciliary coordination were present on the inverted patch, travelling in the direction opposite to those on the normal cortex. The reference point for the directional response of Paramecium cilia to stimuli thus resides within the cilia or their immediate cortical surroundings.  相似文献   

9.
Ionic regulation of cyclic AMP levels in Paramecium tetraurelia in vivo   总被引:2,自引:0,他引:2  
cAMP levels in Paramecium increased dose dependently after a step increase of [Ca] or [Sr] in the incubation, provided K was present. Two mM Ca or Sr tripled cAMP concentrations within 3 s and induced an increase in forward swimming speed. The increase in cAMP formation was strictly dependent on the Donnan ratio [K]: square root [Ca]. Na, Li, or tetraethylammonium could not replace K. The data provide evidence for regulation of cAMP in Paramecium by the membrane surface charge as determined specifically by the regulation of cAMP in Paramecium by the membrane surface charge as determined specifically by the K: Ca ratio.  相似文献   

10.
Paramecium requires oleic acid for growth and can grow in media containing no other fatty acids. In the present study, we have shown that this ciliate utilized oleate mainly as a carbon and energy source, even though this fatty acid was the only substrate available for synthesis of polyunsaturated fatty acids. Culture growth was inhibited by the addition of the drug triparanol. Triparanol decreased the formation of polyunsaturated fatty acids from oleate by preventing desaturation to form the dienoic acid, linoleate. Triparanol inhibition resulted in an altered phospholipid fatty acyl composition, an increased fragility and an altered behavioral response of the cells to a depolarizing stimulation solution. Therefore, although most of the dietary oleate was not used by the cells for polyunsaturated fatty acid synthesis, the desaturation of oleic acid was critical for normal culture growth, cell integrity and swimming behavior, all of which are expected to be dependent on normal membrane lipid composition.  相似文献   

11.
In order to get an insight into the cellular mechanisms for the integration of the effects of gravity, we investigated the gravitactic behaviour in Paramecium. There are two main categories for the model of the mechanism of gravitaxis; one is derived on the basis of the mechanistic properties of the cell (physical model) and the other of the physiological properties including cellular gravireception (physiological model). In this review article, we criticized the physical models and introduced a new physiological model. Physical models postulated so far can be divided into two; one explaining the negative gravitactic orientation of the cell in terms of the static torque generated by the structural properties of the cell (gravity-buoyancy model by Verworn, 1889 and drag-gravity model by Roberts, 1970), and the other explaining it in terms of the dynamic torque generated by the helical swimming of the cell (propulsion-gravity model by Winet and Jahn, 1974 and lifting-force model by Nowakowska and Grebecki, 1977). Among those we excluded the possibility of dynamic-torque models because of their incorrect theoretical assumptions. According to the passive orientation of Ni(2+)-immobilized cells, the physical effect of the static torque should be inevitable for the gravitactic orientation. Downward orientation of the immobilized cells in the course of floating up in the hyper-density medium demonstrated the gravitactic orientation is not resulted by the nonuniform distribution of cellular mass (gravity-buoyancy model) but by the fore-aft asymmetry of the cell (drag-gravity model). A new model explaining the gravitactic behaviour is derived on the basis of the cellular gravity sensation through mechanoreceptor channels of the cell membrane. Paramecium is known to have depolarizing receptor channels in the anterior and hyperpolarizing receptors in the posterior of the cell. The uneven distribution of the receptor may lead to the bidirectional changes of the membrane potential by the selective deformation of the anterior and posterior cell membrane responding to the orientation of the cell in the gravity field; i.e. negative- and positive-going shift of the potential due to the upward and downward orientation, respectively. The orientation dependent changes in membrane potential with respect to gravity, in combination with the close coupling of the membrane potential and the ciliary locomotor activity, may allow the changes in swimming direction along with those in the helical nature of the swimming path; upward shift of axis of helix by decreasing the pitch angle due to hyperpolarization in the upward-orienting cell, and also the upward shift by increasing the pitch angle due to depolarization in the downward-orienting cell. Computer simulation of the model demonstrated that the cell can swim upward along the "super-helical" trajectory consisting of a small helix winding helically an axis parallel to the gravity vector, after which the model was named as "Super-helix model". Three-dimensional recording of the trajectories of the swimming cells demonstrated that about a quarter of the cell population drew super-helical trajectory under the unbounded, thermal convection-free conditions. In addition, quantitative analysis of the orientation rate of the swimming cell indicated that gravity-dependent orientation of the swimming trajectory could not be explained solely by the physical static torque but complementarily by the physiological mechanism as proposed in the super-helix model.  相似文献   

12.
Little is known about the influence of magnetic fields on growth of primitive eukaryotes such as the ciliate Paramecium. The latter are known to exhibit interesting characteristics such as electrotaxis, gravitaxis, and membrane excitability not commonly encountered in higher organisms. This preliminary study reports the effects of static magnetic fields on growth of Paramecium caudatum. The microorganisms were either permanently or 24 h on-and-off exposed to North and South polarity magnetic fields of average field gradient 4.3 T/m, for a period of 96 h. The growth rate and lag phase of all exposed populations were not significantly different from control ones exposed to normal geomagnetic field (P > .05). However, a significant negative shift in t(max) (time taken for maximum growth) of 10.5%-12.2% and a significant decrease (P < .05) in population size of 10.2%-15.1% during the 96 h of experimental conditions were recorded for exposed populations compared to control. Our results suggest that magnetic fields, irrespective of polarity and exposure period reduce Paramecium growth by triggering early senescence of the population. The mechanisms underlying the small changes in population growth are unknown at this level, but various hypotheses have been suggested, including disorganization of swimming patterns resulting from (i) changes in cell membrane electric potential due to high speed movement through a gradient magnetic field and (ii) thermodynamic effect of anisotropic magnetic energies on cell membrane components affecting functioning of calcium channels. Altered swimming movements could in turn affect highly orchestrated processes such as conjugation, essential for survival of the organisms during development of adverse environmental conditions as thought to occur in the closed culture system used in this study.  相似文献   

13.
The membrane potential of Paramecium controls the frequency and direction of the ciliary beat, thus determining the cell's swimming behavior. Stimuli that hyperpolarize the membrane potential increase the ciliary beat frequency and therefore increase forward swimming speed. We have observed that 1) drugs that elevate intracellular cyclic AMP increased swimming speed 2-3-fold, 2) hyperpolarizing the membrane potential by manipulation of extracellular cations (e.g., K+) induced both a transient increase in, and a higher sustained level of cyclic AMP compared to the control, and 3) the swimming speed of detergent-permeabilized cells in MgATP was stimulated 2-fold by the addition of cyclic AMP. Our results suggest that the membrane potential can regulate intracellular cAMP in Paramecium and that control of swimming speed by membrane potential may in part be mediated by cAMP.  相似文献   

14.
The effect of euplotin C—a cytotoxic secondary metabolite produced by the protist ciliate Euplotes crassus—on the voltage-dependent Ca2+ channel activity was studied in a single-celled system by analyzing the swimming behavior of Paramecium. When the intraciliary Ca2+ concentration associated with plasma membrane depolarization increases, a reversal in the direction of ciliary beating occurs, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca2+ influx. The present study demonstrates that the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, is longer in euplotin C-treated cells. Using selective Ca2+ channel blockers, we demonstrate that euplotin C modulates Ca2+ channels similar to the T- and L-types that occur in mammalian cells. Indeed, the increase of CCR duration significantly decreased when flunarizine and nimodipine-verapamil blockers were employed. Membrane fluidity measurements using a fluorescent dye, 6-lauroyl-2-dimethylaminonaphtalene (laurdan), indicated that membranes in euplotin C-treated cells are more tightly packed and ordered than membranes in control cells. Our data suggest that euplotin C enhances backward swimming in our unicellular model system by interacting with the ciliary Ca2+ channel functions through the reduction of cell membrane fluidity.  相似文献   

15.
Changes in intracellular pH affect calcium currents in Paramecium caudatum   总被引:5,自引:0,他引:5  
The relation between intracellular pH and membrane excitability was studied in the holotrich ciliate Paramecium caudatum. Intracellular pH (pHi) was measured with recessed-tip ion-sensitive microelectrodes (Thomas 1974) and electrical properties were examined by current stimulation and conventional two-electrode voltage clamp. Under normal conditions the resting pHi of Paramecium was 6.80 +/- 0.05. Intracellular alkalinization enhanced the early Ca current, while internal acidification depressed the Ca current. Both effects occurred in a voltage-independent manner. The late outward current was relatively unaffected by these alterations. Results obtained with replacement of extracellular Ca2+ by Ba2+ also support a direct effect of pHi on current through the Ca channel. Intracellular alkalinization to pH 7.15 converted graded, quasi-regenerative Ca responses elicited by injected current pulses into all-or-none action potentials. This change to all-or-none behaviour is presumed to be due to the increase in Ca current and a consequent change in the balance of inward and outward currents. Extracellular pH changes had little effect on pHi, resting membrane potential or the current-voltage relations. The intracellular pH was also independent of shifts in membrane potential. The results are consistent with a model in which Ca channel permeability is blocked by intracellular protonation of a single titratable site having an apparent dissociation constant of 6.2.  相似文献   

16.
From an mRNA differential-display analysis of the encystment-excystment cycle of the ciliate Sterkiella histriomuscorum, we have isolated an expressed sequence tag encoding a plasma membrane-type Ca2+-ATPase (PMCA). PMCAs are located either in the plasma membranes or in the membranes of intracellular organelles, and their function is to pump calcium either out of the cell or into the intracellular calcium stores, respectively. The S. histriomuscorum macronuclear PMCA gene (ShPMCA) and its corresponding cDNA were cloned; it is the first member of the Ca2+-ATPase family identified in Sterkiella. The predicted protein of 1,065 amino acids exhibits 37% identity with PMCAs of diverse organisms. A phylogenetic analysis showed its relatedness to homologs of two alveolates: the ciliate Paramecium tetraurelia and the apicomplexan Toxoplasma gondii. Overexpression of the protein ShPMCA failed to rescue the wild-type phenotype of three Ca2+-ATPase-defective mutant strains of Saccharomyces cerevisiae; this failure contrasts with the reported ability of the PMCAs of parasites to complement defects in yeast. ShPMCA mRNA is markedly accumulated during encystment and in resting cysts, suggesting a function during excystment. To address the possibility of a signaling role for calcium at excystment, the capacity of calcium to induce excystment was examined.  相似文献   

17.
The ciliated protozoan, Paramecium, broadcasts the activity of its individual ion channel classes through its swimming behaviour. This fact has made it possible to isolate mutants with defective ion currents, simply by selecting individuals with abnormal swimming patterns. At least four of Paramecium's ion currents are activated by rising intracellular calcium concentration, including two K+ currents and a Na+ current. A variety of cell lines with defects in these Ca2(+)-dependent currents have been isolated: in several cases, the defects have been traced to mutations in the structural gene for calmodulin. Sequence analysis of calmodulins from these and other Ca2(+)-dependent ion-current mutants may enable a detailed mapping of putative channel interaction domains on the surface of the calmodulin molecule.  相似文献   

18.
New light and electron microscope data on the initial steps of endocytobiosis establishment between the ciliate Paramecium and specific intranuclear bacteria Holospora are provided. At the cytoplasmic step of infection bacteria of all Holospora species are found in a vesicle originating from the membrane of the host cell phagosome. The association between host cell microfilaments and the bacterium bearing vesicle may suggest a possible involvement of the ciliate cytoskeleton in the transportation of bacteria to the host cell nucleus. The authors subdivide the process of infection into 6 steps. Some strains of P. caudatum never take up infectious Holospora bacteria in the course of phagocytosis.  相似文献   

19.
Behavioral Mutants in PARAMECIUM CAUDATUM   总被引:4,自引:0,他引:4  
Takahashi M 《Genetics》1979,91(3):393-408
Mutants of Paramecium caudatum with abnormal swimming behavior or responses to cations were obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Some of the mutants, like pawn in P. tetraurelia, cannot swim backward and are called CNR. Seven independently obtained CNR mutants belonged to three complementation groups, designated as cnrA, cnrB and cnrC. Some characteristics of double homo- and heterozygotes were compared with single homo- and heterozygotes. Other behavioral mutants shown to have a genic basis included K+-sensitive, temperature-shock behavioral and slow swimmer. All those mutants except for slow swimmer had lesions in the membrane because Triton-extracted models of them show almost the same swimming behavior as wild type.  相似文献   

20.
Calmodulin (CaM) is known to be a ciliary component. However, the function of CaM in cilia or flagella has not been well understood. Immunoelectron microscopy using anti-CaM antibody showed that CaM was localized on the axonemal microtubules (MTs) and matrix of Tetrahymena cilia. To investigate the signal transduction of Ca(2+)/CaM in cilia, we performed Ca(2+)/CaM-affinity column chromatography in the membrane and matrix fraction. Elongation factor-1alpha (EF-1alpha) was identified as a Ca(2+)/CaM-binding protein in cilia. EF-1alpha is a highly conserved protein and functions in protein translation. In addition, EF-1alpha has been reported to interact with MTs and F-actin in several organisms. Immunoelectron microscopy showed that EF-1alpha was localized on the axonemal MTs. However, in immunoblot analysis, EF-1alpha was mainly extracted in the membrane and matrix fraction from the axonemal MTs by 1% Triton X-100 extraction. These results suggest that interaction between EF-1alpha and axonemal MTs is weak and sensitive to treatment with 1% Triton X-100 and that EF-1alpha mediates between axonemal MTs and CaM in the presence of Ca(2+). Moreover, EF-1alpha was also localized in cilia of Paramecium, suggesting that EF-1alpha functions as a target protein of Ca(2+)/CaM in ciliate cilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号