首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioconvection emerges in a dense suspension of swimming protists as a consequence of their negative-gravitactic upward migration and later settling as a blob of density greater than that of water. Thus, gravity is an important parameter governing bioconvective pattern formation. However, inconsistencies are found in previous studies dealing with the response of bioconvection patterns to increased gravity acceleration (hypergravity); the wave number of the patterns has been reported to decrease during the hypergravity phases of parabolic aircraft flight, while it increases in centrifugal hypergravity. In this paper, we reassess the responses of bioconvection to altered gravity during parabolic flight on the basis of vertical and horizontal observations of the patterns formed by Tetrahymena thermophila and Chlamydomonas reinhardtii. Spatiotemporal analyses of the horizontal patterns revealed an increase in the pattern wave number in both pre- and post-parabola hypergravity. Vertical pattern analysis was generally in line with the horizontal pattern analysis, and further revealed that hypergravity-induced changes preceded at the top layer of the suspensions while microgravity-induced changes appeared to occur from the bottom part of the settling blobs. The responses to altered gravity were rather different between the two sample species: T. thermophila tended to drastically modify its bioconvection patterns in response to changes in gravity level, while the patterns of C. reinhardtii responded to a much lesser extent. This difference can be attributed to the distinct physical and physiological properties of the individual organisms, suggesting a significant contribution of the gyrotactic property to the swimming behavior of some protists.  相似文献   

2.
As part of an ongoing survey of the behavioral responses of vertebrates to abrupt changes in gravity, we report here on the reactions of bats (Carollia perspicillata) exposed to altered gravity during parabolic aircraft flight. In microgravity, mammals typically behave as if they were upside-down and exhibit repetitive righting reflexes, which often lead to long axis rolling. Since bats, however, normally rest upside-down, we hypothesized that they would not roll in microgravity. Only one of three specimens attempted to fly during microgravity. None rolled or performed any righting maneuvers. During periods of microgravity the bats partially extended their forearms but kept their wings folded and parallel to the body. Between parabolas and occasionally during microgravity the bats groomed themselves. Both the extended limbs and autogrooming may be stress responses to the novel stimulus of altered gravity. This is the first behavioral record of Chiroptera in microgravity.  相似文献   

3.
The vertebrate vestibular system detects linear (otolith organs) and angular (semicircular canals) acceleration. The function of the otolith system is twofold, 1: perception of linear acceleration of the head, and 2: assessment of the spatial orientation of the head relative to the vector of gravity. Because of the latter function, a change of gravity will affect the vestibular input which, in turn, may have a wide range of serious physiological effects, for instance on ocular reflexes. The function of the vestibulo-ocular reflex (VOR) is to stabilize the visual image on the retina. Measurement of this VOR provides a method to investigate the (processing within the) vestibular system. Discrimination between gravity and linear acceleration, caused by movement of the head, is not possible. Therefore, information from the otolith system must be constantly compared with additional information from other sensory systems in order to solve the inherent ambiguity between tilt and translation. In this processing, cues from the semicircular canals also play a role. During parabolic flight, experiments can be performed at altered gravity levels for brief periods of time. On earth, the only effective possibility to manipulate gravity for longer periods of time is a centrifuge. Together with experiments in weightlessness during orbital flight, these methods form useful tools to investigate the influence of gravity on physiology. In our laboratory, rats have been kept inside a centrifuge at 2.5 g during their entire life-span (i.e. including gestation).  相似文献   

4.
It has been shown that target-pointing arm movements without visual feedback shift downward in space microgravity and upward in centrifuge hypergravity. Under gravity changes in aircraft parabolic flight, however, arm movements have been reported shifting upward in hypergravity as well, but a downward shift under microgravity is contradicted. In order to explain this discrepancy, we reexamined the pointing movements using an experimental design which was different from prior ones. Arm-pointing movements were measured by goniometry around the shoulder joint of subjects with and without eyes closed or with a weight in the hand, during hyper- and microgravity in parabolic flight. Subjects were fastened securely to the seat with the neck fixed and the elbow maintained in an extended position, and the eyes were kept closed for a period of time before each episode of parabolic flight. Under these new conditions, the arm consistently shifted downward during microgravity and mostly upward during hypergravity, as expected. We concluded that arm-pointing deviation induced by parabolic flight could be also be valid for studying the mechanism underlying disorientation under varying gravity conditions.  相似文献   

5.
An analysis of the gravitational and inertial forces which act during aircraft flight upon the vestibular systems of the aircraft occupants reveals that in the absence of a visual horizon, certain illusory sensations are predictable for various acceleration environments. Horizontal forward applied acceleration results in a climbing (backward tilting) sensation; conversely, horizontal rearward applied acceleration results in a diving (forward tilting) sensation. During any attempt to achieve weightlessness in aircraft parabolic flight, special care has to be taken to avoid unintended longitudinal (x-axis) accelerations. Recent flight tests established that the rotation sensation (Dzendolet, 1971; Gerathewohl, 1956) during entry into parabolic flight can be attributed to the existence of unintended longitudinal accelerations. However, the inversion illusion (Graybiel and Kellogg, 1966) felt by some human subjects at 0g seems to be different from the rotation sensation and could be caused by the diminished pressure forces of the otoliths on the maculae. The inversion illusion of man correlates well with the blind fish diving behavior observed during aircraft parabolic flight (von Baumgartenet al., 1969, 1972). It is suggested that the fish lowg diving response and the human inversion illusion are due to the substitution of a predominately shearing force of low magnitude as a vestibular reference in place of a normal, predominately pressure force. This hypothesis indicates that vestibular senses alone cannot provide meaningful postural orientation to simulated or actual gravity of a magnitude below that of Earth's gravity.This research was supported in part by NASA Contract NAS2-6057.G. L. Shillinger, Jr. is with the Flight Projects Development Division, Ames Research Center, NASA, Moffett Field, California.  相似文献   

6.
The unicellular freshwater flagellate Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitaxis. Previous experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism in which changes of the internal calcium concentration and the membrane potential play an important role. In a recent parabolic flight experiment on board an aircraft (ESA 29th parabolic flight campaign), changes of graviorientation, membrane potential and the cytosolic calcium concentration upon changes of the acceleration (between 1 x g(n), 1.8 x g(n), microgravity) were monitored by image analysis and photometric methods using Oxonol VI (membrane potential) and Calcium Crimson (cytosolic calcium concentration). The parabolic flight maneuvers performed by the aircraft resulted in transient phases of 1.8 x g(n) (about 20 s), microgravity (about 22 s) followed by 1.8 x g(n) (about 20 s). A transient increase in the intracellular calcium concentration was detected from lower to higher accelerations (1 x g(n) to 1.8 x g(n) or microgravity to 1.8 x g(n)). Oxonol VI-labeled cells showed a signal, which indicates a depolarization during the transition from 1 x g(n) to 1.8 x g(n), a weak repolarization in microgravity followed by a rapid repolarization in the subsequent 1 x g(n) phase. The results show good coincidence with observations of recent terrestrial and space experiments.  相似文献   

7.
The availability of orbital space flight opportunities to conduct life sciences research has been limited. It is possible to use parabolic flight and sounding rocket programs to conduct some kinds of experiments during short episodes (seconds to minutes) of reduced gravity, but there are constraints and limitations to these programs. Orbital flight opportunities are major undertakings, and the potential science achievable is often a function of the flight hardware available. A variety of generic types of flight hardware have been developed and tested, and show great promise for use during NSTS flights. One such payload configuration is described which has already flown.  相似文献   

8.
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.  相似文献   

9.
Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.  相似文献   

10.
In single-celled spores of the fern Ceratopteris richardii, gravity directs polarity of development and induces a directional, trans-cellular calcium (Ca2+) current. To clarify how gravity polarizes this electrophysiological process, we measured the kinetics of the cellular response to changes in the gravity vector, which we initially estimated using the self-referencing calcium microsensor. In order to generate more precise and detailed data, we developed a silicon microfabricated sensor array which facilitated a lab-on-a-chip approach to simultaneously measure calcium currents from multiple cells in real time. These experiments revealed that the direction of the gravity-dependent polar calcium current is reversed in less than 25 s when the cells are inverted, and that changes in the magnitude of the calcium current parallel rapidly changing g-forces during parabolic flight on the NASA C-9 aircraft. The data also revealed a hysteresis in the response of cells in the transition from 2g to micro-g in comparison to cells in the micro-g to 2-g transition, a result consistent with a role for mechanosensitive ion channels in the gravity response. The calcium current is suppressed by either nifedipine (calcium-channel blocker) or eosin yellow (plasma membrane calcium pump inhibitor). Nifedipine disrupts gravity-directed cell polarity, but not spore germination. These results indicate that gravity perception in single plant cells may be mediated by mechanosensitive calcium channels, an idea consistent with some previously proposed models of plant gravity perception.  相似文献   

11.
To measure the blood flow of a common carotid artery (CCA) during parabolic flight in the rat, we developed an animal double hold box (ADHB) made of styrene expanded form for the anesthetized rat to keep the animal at a proper posture in an aircaft. Twelve anesthetized rats weighing 291-342 g were surgically operated to mount a ultrasound flowmeter probe (1 mm size,1RS:Transonic Systems Inc.) around the right CCA and to insert a catheter into the right axillar artery for blood pressure measurement. These animals were held comfortably in ADHBs which were placed on the rack installed in the aircraft (MU-300). A total of 27 parabolic flights was performed and the blood flow was measured accurately in 9 rats. This special animal holding facility is useful for various types of animal experiments in an aircraft.  相似文献   

12.
BACKGROUND: Exposure to microgravity during space flight results in profound physiologic changes. Numerous studies have shown changes in circulating populations of peripheral blood immune cells immediately after space flight. It is currently unknown if these changes result from exposure to microgravity or are caused by the stress of reentry and readaptation to gravity. METHODS: We have developed the whole blood staining device (WBSD) as a system for the staining of whole blood collected during space flight for subsequent flow cytometric analysis. This device contains all liquids to address safety issues concerned with space flight and also moves the cells through the staining, lyse/fixation, and dilution steps. RESULTS: Data from flow cytometric analysis of samples stained in the WBSD was found to be comparable to data from samples stained by the conventional methods. Cells stained with the WBSD remain stable in the device for up to 14 days. The necessary manipulations required to use the device were tested on the KC-135 aircraft during the reduced gravity segment of parabolic flight. CONCLUSIONS: With the WBSD immunophenotype analysis can be performed at various time points for the duration of an entire Shuttle flight. In addition, this device has significant terrestrial applications for rapid and easy immunofluorescence labeling of whole blood in remote and isolated locations where immediate access to specialized equipment and skilled laboratory personnel may not be available. The WBSD provides a simple mechanism to design specific immunophenotyping tests for use by nontechnical personnel at bedside or in field locations. Cytometry 37:74-80, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

13.
The use of animals, and more particularly the use of non-human primates, takes on importance when studying the physiological responses involved in the adaptation to changes in gravitational loading. The "Rhesus project", now canceled, was a joint program between CNES and NASA designed to carry out simultaneous experiments of various physiological disciplines using the Rhesus monkey as a human surrogate. The choice of this species was supported by several strong arguments such as the possibility of studying several physiological systems without over-instrumenting, as well as the morphological and phylogenetical closeness with man. Within this framework, building the inflight animal facilities necessary to achieve the ambitious scientific program that was established, required state of art design and technology. Spacelab flight simulations were conducted with the goal both to obtain baseline data and to evaluate the impact of the cabin environment on the circadian timekeeping system which is involved in the regulation of almost all physiological functions and behavior. Even if this project would never fly, the results from these experiments have been a source of thoughts and lessons for the future animal research in microgravity.  相似文献   

14.
Exposure to a weightless environment such as in spaceflight, leads to a number of physiological responses to assure the survival of an organism in this new environment. However, the real effect of microgravity itself has not been clearly established yet. Considering the environmental and operational characteristics of a spaceflight, and as it has been shown in previous flights, the use of animals, and more particularly the non-human primates, takes on importance in understanding the mechanisms and factors involved in the adaptation to changes in gravitational loading. The SLS-3 flight of the American shuttle, scheduled for launch in early 1996, will be the first flight of the Rhesus project, a joint program of C.N.E.S. and N.A.S.A. which will carry out experiments in various physiological disciplines using the Rhesus monkey as a human surrogate. This 16 day orbital flight will be the longest flight accomplished by the shuttle to date. A number of feasibility studies have already been conducted on Macaca mulatta in order to simulate flight conditions to obtain ground data and to test the technical characteristics of the Rhesus Research Facility which have been described elsewhere. Microgravity might be the main factor inducing the physiological changes observed during spaceflights. However, these responses could also be influenced by other factors related to the spaceflight environment such as the life support systems of the spacecraft. Thus, the main purpose of the present study was to determine the impact of specific restraint and cabin environment on the circadian rhythms of body temperature, feeding, drinking, and sleep-waking in order to separate them from the real impact of microgravity.  相似文献   

15.
It is important to clarify the molecular mechanisms of physiological responses of the human body to changes in gravity. Previous reports demonstrated that gravity-changing stress increases the human urinary concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG). However, it has yet to be clarified whether repetitive parabolic flight modulates the urinary concentration of 8-OHdG after exposure to gravity-changing stress. In the present study, the effects of the number of previous experiences with parabolic flight on urinary excretion of 8-OHdG and concentration of serum ACTH were examined in 12 healthy volunteers.  相似文献   

16.
A single antibody-incubation step of an indirect, enzyme-linked immunosorbent assay (ELISA) was performed during microgravity, Martian gravity (0.38 G) and hypergravity (1.8 G) phases of parabolic flight, onboard the NASA KC-135 aircraft. Antibody-antigen binding occurred within 15 seconds; the level of binding did not differ between microgravity, Martian gravity and 1 G (Earth's gravity) conditions. During hypergravity and 1 G, antibody binding was directly proportional to the fluid volume (per microtiter well) used for incubation; this pattern was not observed during microgravity. These effects in microgravity may be due to "fluid spread" within the chamber (observed during microgravity with digital photography), leading to greater fluid-surface contact and subsequently antibody-antigen contact. In summary, these results demonstrate that: i) ELISA antibody-incubation and washing steps can be successfully performed by human operators during microgravity, Martian gravity and hypergravity; ii) there is no significant difference in antibody binding between microgravity, Martian gravity and 1 G conditions; and iii) a smaller fluid volume/well (and therefore less antibody) was required for a given level of binding during microgravity. These conclusions indicate that reduced gravity would not present a barrier to successful operation of immunosorbent assays during spaceflight.  相似文献   

17.
Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.  相似文献   

18.
A cell culture of Paramecium with a precise negative gravitaxis was exposed to 4 x l0(-6) g during a parabolic flight of a sounding rocket for 6 min. Computer image analysis revealed that without gravity stimulus the individual swimming paths remained straight. In addition, three reactions could be distinguished. For about 30 s, paramecia maintained the swimming direction they had before onset of low gravity. During the next 20 s, an approximate reversal of the swimming direction occurred. This period was followed by the expected random swimming pattern. Similar behavior was observed under the condition of simulated weightlessness on a fast-rotating clinostat. Control experiments on the ground under hyper-gravity on a low-speed centrifuge microscope and on a vibration test facility proved that the observed effects were caused exclusively by the reduction of gravity.  相似文献   

19.
It is reported that the stay in the space develops anemia, thrombocytopenia, and altered function and structure of red blood cell. The mechanism of these abnormalities was not clarified yet. Therefore, it is necessary to elucidate the mechanism of the effect of the gravity change on the thrombocytopoiesis, which plays the important role for the hemostasis, using animal models. The cloning of thrombopoietin (TPO), followed by the analysis of TPO and c-mpl (its cellular receptor) knockout mice confirmed its role as the primary regulator of thrombopoiesis. TPO has been shown to stimulate both megakaryocyte colony growth from marrow progenitor cells and the maturation of immature megakaryocyte to form functional platelet. This process includes the massive cytoskeletal rearrangement, such as proplatelet formation and fragmentation of proplatelet. In this study we have focused on the thrombopoiesis in mice those were exposed to gravity change by parabolic flight (PF).  相似文献   

20.
This paper reports the quantitative evaluation of the H-reflex exhibited by parabolic flight with exposure to micro and high-gravity. With respect to previous findings in parabolic flights and short-term space missions, the analysis focused on reflex activity in weightlessness. The aim of this study was to investigate the effect of gravity on H-reflex and motor evoked potentials (MEP) in soleus muscle (SOL) during parabolic flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号