首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze tolerance and ice content of Hyla versicolor showed pronounced variation between summer (June) and winter (December). Summer frogs survived freezing at -3 degrees C for up to 9 hr and ice accumulation up to 50% of their total body water. A time course of ice formation indicated that an equilibrium level was reached in approximately 15 hr. Thus, the lethal ice content was less than the equilibrium ice content for these conditions (63.1%). A second group was induced to enter an overwintering condition by holding them through the summer and then subjecting them to a progressive reduction in temperature and photoperiod for 2 months. These frogs survived freezing for 48 hr at -3 degrees C. Their equilibrium ice content at this temperature was significantly lower (52.5%) than comparably treated summer animals. In the winter acclimatized group, frozen frogs had substantially higher blood glucose levels than unfrozen frogs (22.7 mumol/ml vs. 1.33 mumol/ml), but glycerol levels were not elevated after freezing. Freezing frogs conditioned for overwintering at -7 degrees C resulted in a higher equilibrium ice content (62.6%), but none survived. It is evident that in preparation for overwintering, frogs reduce the amount of ice formed at a given subzero temperature, but there is little indication of a substantial change in the total amount of ice tolerated.  相似文献   

2.
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thawing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.  相似文献   

3.
Freeze tolerance in the frog Rana sylvatica is supported by nonanticipatory mobilization of cryoprotectant (glucose) and redistribution of organ water. Other freeze-tolerant frogs may manifest these responses but differences exist. For example, the gray treefrog (Hyla versicolor) accumulates mostly glycerol as opposed to glucose. The current study reports additional novel features about cryoprotection in H. versicolor. Frogs were acclimated to low temperature for 12 weeks and frozen for 3 days at -2.4 degrees C. Some frogs were then thawed at 3 degrees C for 4 hr. Calorimetry revealed that frozen frogs had 53.9% +/- 11.1% of their body water in ice, and all frogs recovered following this procedure. Plasma glucose was low prior to the onset of freezing (1.1 +/- 0.9 micromol/ml) and it was 20x higher in postfreeze frogs. Constituting nearly 30% of plasma solute, glycerol was 117.2 +/- 13.6 micromol/ml prior to freezing and it remained equally high in postfreeze frogs. Liver water content was moderately lower in frozen frogs when compared to controls (62.9% +/- 3.7% vs. 68.6% +/- 1.7%), whereas postfreeze frogs excessively hydrated their livers (75.7% +/- 2.1%). Less-pronounced changes were seen in muscle water content. H. versicolor can mobilize its major cryoprotectant, glycerol, in response to extended cold acclimation, which is unique in comparison to other freeze-tolerant frogs, and it experiences only moderate organ dehydration during freezing. This species conforms with other freeze-tolerant frogs, however, by mobilizing glucose as a direct response to tissue freezing.  相似文献   

4.
Several species of terrestrially hibernating frogs, turtles and insects have developed mechanisms, such as increased plasma glucose, anti-freeze proteins and antioxidant enzymes that resist to freezing, for survival at subzero temperatures. In the present study, we assessed the importance of glucose to cryoresistance of two anuran amphibians: the frog Rana catesbeiana and the toad Bufo paracnemis. Both animals were exposed to -2 degrees C for measurements of plasma glucose levels, liver and muscle glycogen content, haematocrit and red blood cell volume. Frogs survived cold exposure but toads did not. Blood glucose concentration increased from 40.35 +/- 7.25 to 131.87 +/- 20.72 mg/dl (P < 0.01) when the frogs were transferred from 20 to -2 degrees C. Glucose accumulation in response to cold exposition in the frogs was accompanied by a decrease (P < 0.05) in liver glycogen content from 3.94 +/- 0.42 to 1.33 +/- 0.36 mg/100 mg tissue, indicating that liver carbohydrate reserves were probably the primary carbon source of glucose synthesis whereas muscle carbohydrate seems unimportant. In the toads, the cold-induced hyperglycaemia was less (P < 0.05) pronounced (from 27.25 +/- 1.14 to 73.72 +/- 13.50 mg/dl) and no significant change could be measured in liver or muscle glycogen. Cold exposition had no effect on the haematocrit of the frogs but significantly reduced (P < 0.01) the haematocrit of toads from 20.0 +/- 2.1% to 5.8 +/- 1.7% due to a decreased red blood cell volume (from 1532 +/- 63 to 728 +/- 87 mm3). When toads were injected with glucose, blood glucose increased to levels similar to those of frogs and haematocrit did not change, but this failed to make them cryoresistent. In conclusion, the lack of cold-induced glucose catabolism may not be the only mechanism responsible for the freeze intolerance of Bufo paracnemis, a freeze-intolerant species.  相似文献   

5.
Ice formation in the freeze-tolerant wood frog (Rana sylvatica) induces the production and distribution of the cryoprotectant, glucose. Concomitantly, organs undergo a beneficial dehydration which likely inhibits mechanical injury during freezing. Together, these physiological responses promote freezing survival when frogs are frozen under slow cooling regimes. Rapid cooling, however, is lethal. We tested the hypothesis that the injurious effects of rapid cooling stem from an inadequate distribution of glucose to tissues and an insufficient removal of water from tissues during freezing. Accordingly, we compared glucose and water contents of five organs (liver, heart, skeletal muscle, eye, brain) from wood frogs cooled slowly or rapidly during freezing to -2.5 degrees C. Glucose concentrations in organs from slowly cooled frogs were significantly elevated over unfrozen controls, but no significant increases occurred in rapidly cooled frogs. Organs from slowly cooled frogs contained significantly less water than did those from controls, whereas water contents from rapidly cooled frogs generally were unchanged. Rapid cooling therefore inhibited the production and distribution of cryoprotectant and organ dehydration during freezing. This inhibition may result from an accelerated, premature failure of the cardiovascular system.  相似文献   

6.
Progression through the cell cycle is temperature sensitive, but the relationship is not straightforward. In culture, many types of mammalian cells fail to undergo the G(2)/M transition after cooling from 37 degrees C to 16-20 degrees C (moderate hypothermia). However, progression through G(1) and S is not blocked at these temperatures, nor is progression through mitosis in cells cooled after they have become committed to the division process. Thus, at least one pathway is present during G(2)-but not during G(1), S or mitosis-that is selectively disrupted at or below a critical temperature. As a result, a prolonged (24-48 hr) exposure to moderate hypothermia can be used to enrich cultures for G(2) cells. A brief (1 hr) exposure to severe hypothermia (4-10 degrees C) is also reported to induce a high degree of mitotic synchrony (up to 80%) in some mammalian cultures. Although the mechanism behind this synchronization remains vague, it may involve a cell cycle checkpoint, triggered in response to the cold shock, that transiently inhibits the G(1)/S transition.  相似文献   

7.
Summary Wood frogs (Rana sylvatica) were frozen to-2.5°C under five distinct cooling regimes to investigate the effect of cooling rate on survival. Frogs survived freezing when cooled at -0.16°C · h-1 or -0.18°C · h-1, but mortality resulted at higher rates (-0.30°C · h-1,-1.03°C · h-1, and -1.17°C · h-1). Surviving frogs in the latter groups required longer periods to recover, and transient injury to the neuromuscular system was evident. Some of the frogs that died had patches of discolored, apparently necrotic skin; vascular damage, as indicated by hematoma, also occurred. It is concluded that slow cooling may be critical to the freeze tolerance of wood frogs. Additional studies examined the effect of cooling rate on physiological responses promoting freeze tolerance. Mean glucose concentrations measured in plasma (15–16 mol · ml-1) and liver (42–45 mol · g-1) following a 2-h thaw did not differ between slowly- and rapidly-cooled frogs but in both groups were elevated relative to unfrozen controls. Thus freezing injury to rapidly-cooled frogs apparently was not mitigated by the presence of elevated glucose. Water contents of liver tissue, measured 2 h post-thawing, did not differ between slowly-cooled (mean = 77.6%) and rapidly-cooled (mean = 78.5%) frogs. However, the mean hematocrit of slowly-cooled frogs (48%) was significantly higher than that (37%) of frogs cooled rapidly, possibly owing to differences in the dynamics of tissue water during freezing.  相似文献   

8.
Mechanism of cryoprotection by extracellular polymeric solutes.   总被引:1,自引:1,他引:0       下载免费PDF全文
To elucidate the means by which polymer solutions protect cells from freezing injury, we cooled human monocytes to -80 degrees C or below in the presence of various polymers. Differential scanning calorimetric studies showed that those polymers which protect cells best have a limiting glass transition temperature (T'g) of approximately -20 degrees C; those with a T'g significantly higher or lower did not protect. Freeze-etch electron micrographs indicated that intracellular ice crystals had formed during this freezing procedure, but remained smaller than approximately 300 nm in the same proportion of cells as survived rapid thawing. We propose that cryoprotection of slowly frozen monocytes by polymers is a consequence of a T'g of -20 degrees C in the extracellular solution. In our hypothesis, the initial concentration and viscosity of protective polymer solutions reduce the extent and rate of cell water loss to extracellular ice and limit the injurious osmotic stress, which cells face during freezing at moderate rates to -20 degrees C. Below -20 degrees C, glass formation prevents further osmotic stress by isolating cells from extracellular ice crystals, virtually eliminating cell water loss at lower temperatures. On the other hand, the protective polymer solutions will allow some diffusion of water away from cells at temperatures above T'g. If conditions are correct, cells will concentrate the cytoplasm sufficiently during the initial cooling to T'g to avoid lethal intracellular freezing between T'g and the intracellular Tg, which has been depressed to low temperatures by that concentration. Thus, when polymers are used as cryoprotective agents, cell survival is contingent upon maintenance of osmotic stress within narrow limits.  相似文献   

9.
10.
Previous studies into the mechanisms governing the freezing of cells in the absence of extracellular ice have been extended to develop a method for the preservation of viable cells in the undercooled state. Deep undercooling of cells is achieved by suspending fine droplets of the cells in oil to make an emulsion, thus minimizing initiation of extracellular ice nucleation. Attempts to preserve yeast cells, cultured sainfoin cells, and dissected shoot-tips (pea and potato) in this way are described. The main findings are that yeast cells can be preserved undercooled at -20 degrees C for at least 16 weeks with no detectable loss of viability, showing that -20 degrees C is a low enough temperature for inhibition of significant biochemical deterioration and that the emulsions are stable over long periods. In preliminary experiments, sainfoin cells survived 24 hr at -10 degrees C, and shoot-tips survived 48 hr at -10 degrees C. Sainfoin cells, conditioned by growth in medium supplemented with sorbitol, showed enhanced survival after exposure to low temperatures and a lower intracellular freezing point than control cells. Possible reasons for this are discussed.  相似文献   

11.
12.
13.
Arrhythmias developing in isolated Langendorff-perfused heart following the cooling of the perfusion solution from +37 to +3 degrees C were studied in rats and winter hibernating ground squirrels Citellus undulatus with application of no drugs. In rats, hypothermia significantly increased the probability of ventricular arrhythmias (from 22 +/- 6 % at 37 degrees C to 56 +/- 14 % at 17 degrees C). Excitation failure was observed in the rat hearts below 10 +/- 1 degrees C. The appearance of arrhythmias was closely correlated with a decrease in the wavelength which strongly suggests a reentrant mechanism of the hypothermic arrhythmias. In contrast, ground squirrels showed insensibility of the wavelength to cooling and were resistant to arrhythmias during hypothermia.  相似文献   

14.
Extracellular freezing injury at high subzero temperatures in human polymorphonuclear cells (PMNs) was studied with a cryomicroscope, electron microscope, and functional assays (phagocytosis, microbicidal activity, and chemotaxis). There are at least four major factors in freezing injury: osmotic stress, chilling, cold shock, and dilution shock. Extracellularly frozen PMNs lose functions when cooled to -2 degrees C without a cryoprotectant. Cells lose volume on freezing to the same degree as in hypertonic exposure. PMNs have a minimum volume to which they can shrink without injury. Greater dehydration produces irreversible injury to cellular functions, and cells eventually collapse under high osmotic stress. Chilling sensitivity is seen in slowly chilled, supercooled PMNs below -5 degrees C; at -7 degrees C, functions are lost in 1 h. This injury can be prevented by the addition of Me2SO but not glycerol. Me2SO does not, however, prevent cold shock (injury due to rapid cooling), which is seen during cooling at 10 degrees C/min to -14 degrees C, but not during slow cooling at 0.5 degrees C/min. One of the problems of using glycerol as a cryoprotectant stems from the high sensitivity of PMNs to dilution shock during the dilution or removal of glycerol.  相似文献   

15.
To investigate the roles that gene expression and new protein synthesis play in freezing survival by the wood frog, Rana sylvatica, we compared the in vitro translation products made from mRNA isolated from six tissues (liver, brain, heart, muscle, kidney, gut) of control (5 degrees C), frozen (24 h at -2.5 degrees C), and thawed (24 h at 5 degrees C after 24 h frozen) frogs. [(35)S]Methionine-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and located by fluorography. Results indicated specific changes in the translatable populations of mRNA in tissues of freezing-exposed frogs that were largely reversed upon thawing. Differential protein expression was greatest in the comparison of liver from control versus frozen frogs with proteins ranging from 45 to 14.8 kDa identified as enhanced or unique to the frozen state. One unique protein appeared in skeletal muscle (116 kDa) of freeze-exposed frogs while another (52.5 kDa) was enhanced. Analysis of brain and heart each revealed the presence of one protein unique to the frozen state in each (58.9 and 5.9 kDa, respectively) whereas no change in the pattern of in vitro translation products was seen in gut (stomach + intestine combined) or kidney between the three experimental states. These freeze-induced alterations in the populations of translatable mRNA suggest that changes in the complement of specific proteins underlie various adaptive responses that contribute to the freezing survival of this amphibian.  相似文献   

16.
Considerable study has focused on the physiological adaptations for freeze tolerance in the wood frog, Rana sylvatica, a northern species that overwinters within the frost zone, but little attention has been paid to the associated costs to organismal performance. Here we report that freezing causes transient impairment of locomotor endurance and adverse changes in exercise physiology that persist for at least 96 h. Wood frogs frozen at -2 degrees C for 36 h exhibited normal behaviors and hydro-osmotic status and near-normal metabolite (glycogen, glucose, and lactate) levels within 24 h after thawing began. However, when exercised to exhaustion on a treadmill, these frogs showed a 40% reduction in endurance as compared to sham-treated (unfrozen) controls, a reduction that persisted for at least 96 h. Previously frozen frogs exhibited higher rates of lactate accumulation during exercise than controls, suggesting that prior freezing forces greater reliance on the glycolytic pathways of energy production to support exercise. Given that this species breeds in late winter, when subzero temperatures are common, freezing may result in reduced fitness by hampering their ability to reach the pond, avoid predators, and successfully obtain mates.  相似文献   

17.
The sub-Antarctic beetle Hydromedion sparsutum (Coleoptera, Perimylopidae) is common locally on the island of South Georgia where sub-zero temperatures can be experienced in any month of the year. Larvae were known to be weakly freeze tolerant in summer with a mean supercooling point (SCP) around -4 degrees C and a lower lethal temperature of -10 degrees C (15min exposure). This study investigated the effects of successive freezing exposures on the SCP and subsequent survival of summer acclimatised larvae. The mean SCP of field fresh larvae was -4.2+/-0.2 degrees C with a range from -1.0 to -6.1 degrees C. When larvae were cooled to -6.5 degrees C on 10 occasions at intervals of 30min and one and four days, survival was 44, 70 and 68%, respectively. The 'end of experiment' SCP of larvae surviving 10 exposures at -6.5 degrees C showed distinct changes and patterns from the original field population depending on the interval between exposure. In the 30min interval group, most larvae froze between -6 and -8 degrees C, a depression of up to 6 degrees C from the original sample; all larvae were dead when cooling was continued below the SCP to -12 degrees C. In the one and four day interval groups, most larvae froze above -6 degrees C, showing no change as a result of the 10 exposures at -6.5 degrees C. As with the 30min interval group, some larvae froze below -6 degrees C, but with a wider range, and again, all were dead when cooled to -12 degrees C. However, in the one and four day interval groups, some larvae remained unfrozen when cooled to -12 degrees C, a depression of their individual SCP of at least 6 degrees C, and were alive 24h after cooling. In a further experiment, larvae were cooled to their individual SCP temperature at daily intervals on 10 occasions to ensure that every larva froze every day. Most larvae which showed a depression of their SCP of 2-4 degrees C from their day one value became moribund or died after six or seven freezing events. Survival was highest in larvae with SCPs of -2 to -3 degrees C on day one and which froze at this level on all 10 occasions. The results indicate that in larvae in which the SCP is lowered following sub-zero exposure, the depression of the SCP is greatest in individuals that do not actually freeze. Further, the data suggest that after successive frost exposures in early winter the larval population may become segregated into two sub-populations with different overwintering strategies. One group consists of larvae that freeze consistently in the temperature range from -1 to -3 degrees C and can survive multiple freeze-thaw cycles. A second group with lower initial SCPs (around -6 degrees C), or which fall to this level or lower (down to -12 degrees C) after freezing on one or more occasions, are less likely to freeze through extended supercooling, but more likely to die if freezing occurs.  相似文献   

18.
19.
One widely accepted explanation of injury from slow freezing is that damage results when the concentration of electrolyte reaches a critical level in partly frozen solutions during freezing. We have conducted experiments on human red cells to further test this hypothesis. Cells were suspended in phosphate-buffered saline containing 0-3 M glycerol, held for 30 min at 20 degrees C to permit solute permeation, and frozen at 0.5 or 1.7 degrees C/min to various temperatures between -2 and -100 degrees C. Upon reaching the desired minimum temperature, the samples were warmed at rates ranging from 1 to 550 degrees C/min and the percent hemolysis was determined. The results for a cooling rate of 1.7 degrees C/min indicate the following: (a) Between 0.5 and 1.85 M glycerol, the temperature yielding 50% hemolysis (LT50) drops slowly from -18 to -35 degrees C. (b) The LT50's over this range of concentrations are relatively independent of warming rate. (c) With glycerol concentrations of 1.95 and 2.0 M, the LT50 drops abruptly to -60 degrees C and to below -100 degrees C, respectively, and becomes dependent on warming rate. The LT50 is lower with slow warming at 1 degree C/min than with rapid. With still higher concentrations (2.5 and 3.0 M), there is no LT50, i.e., more than 50% of the cells survive freezing to-100 degrees C. Results for cooling at 0.5 degrees C/min in 2 M glycerol were similar except that the LT50s were some 10-20 degrees C higher. A companion paper (Rall et al., Biophys. J. 23:101-120, 1978) examines the relation between survival and the concentrations of salts produced during freezing.  相似文献   

20.
Nitric oxide and prostacyclin are endogenous endothelium-derived vasodilators, but little information is available on their release during hypothermia. This study was carried out to test the hypothesis that endothelium may modulate vascular reactivity to decreased temperature changes. Segments of contracted (prostaglandin F(2alpha), 2x10(-6)M) canine coronary, femoral, and renal arteries, with and without endothelium, were in vitro ("organ chambers") exposed to progressive hypothermia (from 37 to 10 degrees C) in graded steps. The study is limited to physiological measurements of vascular tone, in the presence or absence of PGI(2) and/or NOS inhibitors, which show correlation with the relaxation. Hypothermia induced vasodilatation of vessels with intact endothelium, which became endothelium-independent below 20 degrees C. This vasodilatation began at 35 degrees C and, in the presence of indomethacin (2x10(-6)M), at 30 degrees C. Endothelium-dependent vasodilatation to hypothermia was blocked by L-NMMA or L-NOARG (10(-5)M), two competitive inhibitors of nitric oxide synthase (n=5 each, P<0.05). Oxyhemoglobin (2x10(-6)M) also inhibited vasodilatation induced by hypothermia (n=6, P<0.05). Pretreatment with either atropine or pirenzepine (10(-6)M) inhibited hypothermia-mediated vasodilatation (n=5 each, P<0.05). The present in vitro study concluded that the endothelium is sensitive to temperature variations and indicated that PGI(2) and NO-dependent pathways may be involved endothelium-dependent relaxation to hypothermia. The endothelium-dependent vasodilatation to hypothermia, in systemic and coronary arteries, is mediated by the M1 muscarinic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号