首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the mechanism of the bone marrow-induced pulmonary edema in the isolated Ringer-perfused rabbit lung. Bone marrow administration (0.2 ml/kg body wt) increased pulmonary arterial pressure, capillary pressure, arterial resistance, and venous resistance within 2-4 min. Bone marrow also produced marked increases in lung wet weight and the capillary filtration coefficient but at later time points (90-120 min) during the perfusion. Only the triglyceride-containing lipid component of the bone marrow produced increases in pulmonary hemodynamics, lung wet weight, and the capillary filtration coefficient comparable to those observed after bone marrow. Bone marrow and the lipid component of bone marrow both produced increases in venous effluent lipoprotein lipase activity (the enzyme responsible for hydrolysis of triglycerides to free fatty acids). Bone marrow also stimulated the production of thromboxane B2 but not 6-ketoprostaglandin F1 alpha in the perfused lung. Both meclofenamate (1 microM), a cyclooxygenase inhibitor, and U-60,257 (10 microM), a lipoxygenase inhibitor, attenuated the bone marrow-induced pulmonary hemodynamic response, whereas only U-60,257 attenuated the increases in lung wet weight and the capillary filtration coefficient. In conclusion, pulmonary embolization induced by bone marrow results in increases in lung weight and the capillary filtration coefficient in the isolated Ringer-perfused rabbit lung. Pulmonary vasoconstriction is partially dependent on arachidonic acid metabolites but appears to be independent of circulating blood-formed elements. The lipid component of bone marrow or products derived from this component (e.g., free fatty acids and lipoxygenase products) may mediate the bone marrow-induced pulmonary edema.  相似文献   

2.
Intraosseous cannulation is an accepted means to achieve vascular access when peripheral venous access is not available. It is common practice to flush the intraosseous cannula with saline prior to establishing infusions. The objective of this study was to evaluate changes in intraosseous pressure during the flush procedure and to assess the variability of pressure changes induced by different practitioners. Two intraosseous cannulas were placed in an isolated cadaveric femur collected from a swine. Intraosseous pressure and the rate of change in pressure were recorded continuously during a series of saline flushes into a distal femoral intraosseous cannula by 21 members of the veterinary research staff at the authors' institution. Median peak intraosseous pressures exceeded 600 mmHg, and an inverse relationship was noted between peak intraosseous pressure and the duration of flush. Bone marrow fat emboli were grossly evident in flush effluents and their presence was confirmed by microscopic examination. Until the practitioners were informed of the pressure changes induced by the intraosseous cannula flush, few had appreciated the magnitude of the pressures that they had generated, suggesting that an instrumented intraosseous flush preparation like the one used in this study may prove useful as a training tool for flush procedures.  相似文献   

3.
In dogs anesthetized with pentobarbital, central vena caval pressure (CVP), portal venous pressure (PVP), and intrahepatic lobar venous pressure (proximal to the hepatic venous sphincters) were measured. The objective was to determine some characteristics of the intrahepatic vascular resistance sites (proximal and distal to the hepatic venous sphincters) including testing predictions made using a recent mathematical model of distensible hepatic venous resistance. The stimulus used was a brief rise in CVP produced by transient occlusion of the thoracic vena cava in control state and when vascular resistance was elevated by infusions of norepinephrine or histamine, or by nerve stimulation. The percent transmission of the downstream pressure rise to upstream sites past areas of vascular resistance was elevated. Even small increments in CVP are partially transmitted upstream. The data are incompatible with the vascular waterfall phenomenon which predicts that venous pressure increments are not transmitted upstream until a critical pressure is overcome and then further increments would be 100% transmitted. The hepatic sphincters show the following characteristics. First, small rises in CVP are transmitted less than large elevations; as the CVP rises, the sphincters passively distend and allow a greater percent transmission upstream, thus a large rise in CVP is more fully transmitted than a small rise in CVP. Second, the amount of pressure transmission upstream is determined by the vascular resistance across which the pressure is transmitted. As nerves, norepinephrine, or histamine cause the hepatic sphincters to contract, the percent transmission becomes less and the distensibility of the sphincters is reduced. Similar characteristics are shown for the "presinusoidal" vascular resistance and the hepatic venous sphincter resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We tested the method of estimating capillary pressure from venous pressure transients obtained after sudden venous clamping in a hydrodynamic model. The basic principles were confirmed in the model, but it was found that when occlusion was caused over a relatively wide distance or in a predistended vessel, capillary pressure was overrated. This problem was due to volume backflow from the occlusion site, since it could be eliminated by placing a one-way valve upstream from the occlusion site. Upstream from the valve, the venous pressure transient accurately followed capillary pressure. Downstream, however, the reading of capillary pressure was impaired by the backflow volume squeezed between valve and occlusion clamp, which caused an immediate large pressure elevation. We also tested the method recently advanced to estimate capillary pressure in humans from venous pressure curves obtained after rapid venous occlusion with an air-filled compression cuff. With the cuff around the upper arm, venous pressure was recorded at different levels along the forearm. The tracings obtained from the dorsum of the hand and halfway along the forearm did not show the initial rapid upstrokes that might indicate the capillary pressure. Tracings obtained slightly below or above the cubital fossa were similar to those seen downstream from the one-way valve in the model. Extrapolation to zero-time, using the distally recorded curves as a template, yielded values equal to venous pressure. We conclude that although the problem of backflow can be circumvented by pressure recording distal from venous valves, the method of venous occlusion by a circular upper-arm cuff may not be appropriate to estimate capillary pressure in humans.  相似文献   

5.
This investigation was undertaken to determine whether a Starling resistor or venous waterfall effect exists between the sagittal sinus and the cerebral veins such that increases in sagittal sinus pressure (Pss) do not abolish cerebral venous outflow and to examine two possible contributions of extracranial venous valves in regulating outflow. Anesthetized dogs were subjected to positive end-expiratory pressure (PEEP) before and after intracranial pressure (Pic) was elevated by inflation of an epidural balloon. PEEP raised Pss equally in all animals, but Pic and cerebral venous pressure (Pcv) increased less in the presence of intracranial hypertension. When Pss was low, passage of a catheter in the cerebral vein in and out of the sagittal sinus demonstrated an abrupt drop in pressure as the sinus was entered. When Pss was raised and lowered independently of superior vena caval pressure (Psvc) the changes in Pic and Pcv were less when Pss was decreased than when it was increased. Sustained increases and decreases in Psvc caused increases and decreases in Pcv, Pic, Pss, and external jugular venous pressure (Pejv) regardless of whether external jugular venous valves were present or absent. We conclude that a Starling resistor between the sagittal sinus and the cerebral veins regulates cerebral venous outflow when Pss is increased by PEEP and other maneuvers that raise Psvc. The waterfall maintains Pcv and Pic at normal levels when Psvc and Pss are reduced. Extracranial venous valves are not essential to this mechanism.  相似文献   

6.
Intrahepatic pressure (9.4 +/- 0.3 mmHg; 1 mmHg = 133.32 Pa), measured proximal to a hepatic venous resistance site, was insignificantly different from portal venous pressure (9.6 +/- 0.4 mmHg). This lobar venous pressure is not wedged hepatic venous pressure as it is measured from side holes in a catheter with a sealed tip. Validation of the lobar venous pressure measurement was done in a variety of ways and using different sizes and configurations of catheters. The site of hepatic venous resistance in the dog is localized to a narrow sphincterlike region about 0.5 cm in length and within 1-2 cm (usually within 1 cm) of the junction of the vena cava and hepatic veins. Sinusoidal and portal venous resistance appears insignificant in the basal state and large increases in liver blood volume (histamine infusion or passive vena caval occlusion) or large decreases in liver blood volume (passive vascular occlusion) do not alter the insignificant pressure gradient between portal and lobar venous pressures. Norepinephrine infusion (1.25 microgram X kg-1 X min-1 intraportal) and hepatic sympathetic nerve stimulation (10 Hz) led to a significantly greater rise in portal venous pressure than in lobar venous pressure, indicating some presinusoidal (and (or) sinusoidal) constriction and this indicates that lobar venous pressure cannot be assumed under all conditions to accurately reflect portal pressure. However, most of the rise in portal venous pressure induced by intraportal infusion of norepinephrine or nerve stimulation and virtually all of the pressure rise induced by histamine could be attributed to the postsinusoidal resistance site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The venous occlusion technique was used to measure capillary pressure in the forearm and foot of man over a wide range of venous pressures. In six recumbent subjects venous pressure (Pv) in the forearm (mean +/- SE) was 9.3 +/- 1.4 mmHg and the venous occlusion estimate of capillary pressure (Pc) was 17.0 +/- 1.6 mmHg, whereas in another six subjects Pv in the foot was 17.1 +/- 1.2 mmHg and Pc was 23.4 +/- 2.5 mmHg. Venous pressure in the limbs was increased either by changes in posture or by venous congestion with a sphygmomanometer cuff. On standing Pv in the foot increased to 95.2 +/- 1.5 mmHg and Pc rose to 112.8 +/- 3.1 mmHg. The relationship established between venous pressure and capillary pressure in the forearm is Pc = 1.16 Pv + 8.1, whereas in the foot the relationship is Pc = 1.2 Pv + 1.6. The magnitude and duration of the changes in capillary pressure were also recorded during reactive hyperemia. The venous occlusion method of measuring capillary pressure is simple and easily applied to studies in humans.  相似文献   

8.
The epicardial coronary venous pressure in 16 dogs was compared with coronary arterial pressure as well as aortic, intraventricular, and intramyocardial pressures. Partial aortic occlusion augmented intraventricular (IVP), intramyocardial (IMP), aortic (AP), and coronary arterial pressures. Peripheral coronary venous pressure was also elevated. Dobutamine significantly augmented IVP and IMP but not aortic or central coronary artery pressures; this agent significantly elevated coronary venous systolic pressure (28/8 to 84/12 mmHg) (1 mmHg = 133.322 Pa). Nitroglycerine decreased IVP, IMP, and AP significantly. Central coronary arterial pressure also fell significantly, but coronary venous pressures remained unchanged. In contrast dipyridamole resulted in no change in IVP, IMP, AP, or coronary arterial systolic pressures; however, the peripheral coronary venous systolic pressure became significantly elevated. Thus the two vasodilators, nitroglycerine and dipyridamole, had different effects upon coronary venous pressure. These data reinforce the recently expressed view that coronary veins behave in a complex fashion and further suggest that their pressures are dependent upon coronary artery pressure, intramyocardial pressure, and coronary venous tone.  相似文献   

9.
Model studies have been advanced to suggest both that a siphon does and does not support cerebral blood flow in an upright position. If a siphon is established with the head raised, it would mean that internal jugular pressure reflects right atrium pressure minus the hydrostatic difference from the brain. This study measured spinal fluid pressure in the upright position, the pressure and the ultrasound-determined size of the internal jugular vein in the supine and sitting positions, and the internal jugular venous pressure during seated exercise. When the head was elevated approximately 25 cm above the level of the heart, internal jugular venous pressure decreased from 9.5 (SD 2.8) to 0.2 (SD 1.0) mmHg [n = 15; values are means (SD); P < 0.01]. Similarly, central venous pressure decreased from 6.2 (SD 1.8) to 0.6 (SD 2.6) mmHg (P < 0.05). No apparent lumen was detected in any of the 31 left or right internal veins imaged at 40 degrees head-up tilt, and submaximal (n = 7) and maximal exercise (n = 4) did not significantly affect internal jugular venous pressure. While seven subjects were sitting up, spinal fluid pressure at the lumbar level was 26 (SD 4) mmHg corresponding to 0.1 (SD 4.1) mmHg at the base of the brain. These results demonstrate that both for venous outflow from the brain and for spinal fluid, the prevailing pressure approaches zero at the base of the brain when humans are upright, which negates that a siphon supports cerebral blood flow.  相似文献   

10.
The influence of the extravascular pressure on the size of the increase in vascular resistance after elevation of venous outflow pressure (venous-vasomotor response) was studied in an intestinal segment, perfused at a constant rate, in anaesthetized dogs. If pressure in the lumen of the intestine was elevated (spontaneously, pharmacologically, mechanically) or pressure in the plethysmograph was raised, venous-vasomotor responses were either smaller or absent. When pressure in the intestinal lumen was raised, blood volume increments produced in the segment by elevated venous pressure were significantly smaller than those observed in the presence of resting pressure. The presence of a venous-vasomotor response was correlated to the quantitative relationship between the extravascular and the venous pressure. Its induction was dependent on whether the outflow venous pressure was higher than the pressure values in the intestinal lumen or the plethysmograph; in that case it developed to an extent corresponding to the increment in transmural vascular pressure.  相似文献   

11.
There are sex-related differences in venous compliance and capillary filtration in the lower limbs, which to some extent can explain the susceptibility to orthostatic intolerance in young women. With age, venous compliance and capacitance are reduced in men. This study was designed to evaluate age-related changes in venous compliance and capillary filtration in the lower limbs of healthy women. Included in this study were 22 young and 12 elderly women (23.1 +/- 0.4 and 66.4 +/- 1.4 yr). Lower body negative pressure (LBNP) of 11, 22, and 44 mmHg created defined transmural pressure gradients in the lower limbs. A plethysmographic technique was used on the calf to assess venous capacitance and net capillary filtration. Venous compliance was calculated with the aid of a quadratic regression equation. No age-related differences in venous compliance and capacitance were found. Net capillary filtration and capillary filtration coefficient (CFC) were lower in elderly women at a LBNP of 11 and 22 mmHg (0.0032 vs. 0.0044 and 0.0030 vs. 0.0041 ml.100 ml(-1).min(-1).mmHg(-1), P < 0.001). At higher transmural pressure (LBNP, 44 mmHg), CFC increased by approximately 1/3 (0.010 ml.100 ml(-1).min(-1).mmHg(-1)) in the elderly (P < 0.001) but remained unchanged in the young women. In conclusion, no age-related decrease in venous compliance and capacitance was seen in women. However, a decreased CFC was found with age, implying reduced capillary function. Increasing transmural pressure increased CFC in the elderly women, indicating an increased capillary susceptibility to transmural pressure load in dependent regions. These findings differ from earlier studies on age-related effects in men, indicating sex-specific vascular aging both in the venous section and microcirculation.  相似文献   

12.
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that "venous recoil" does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials.  相似文献   

13.
Increases in central venous pressure and arterial pressure have been reported to have variable effects on normal arginine vasopressin (AVP) levels in healthy humans. To test the hypothesis that baroreceptor suppression of AVP secretion might be more likely if AVP were subjected to a prior osmotic stimulus, we investigated the response of plasma AVP to increased central venous pressure and mean arterial pressure after hypertonic saline in six normal volunteers. Plasma AVP, serum osmolality, heart rate, central venous pressure, mean arterial pressure, and pulse pressure were assessed before and after a 0.06 ml.kg-1.min-1-infusion of 5% saline give over 90 min and then after 10 min of 30 degrees head-down tilt and 10 min of head-down tilt plus lower-body positive pressure. Hypertonic saline increased plasma AVP. After head-down tilt, which did not change heart rate, pulse pressure, or mean arterial pressure but did increase central venous pressure, plasma AVP fell. Heart rate, pulse pressure, and central venous pressure were unchanged from head-down tilt values during lower-body positive pressure, whereas mean arterial pressure increased. Plasma AVP during lower-body positive pressure was not different from that during tilt. Osmolality increased during the saline infusion but was stable throughout the remainder of the study. These data therefore suggest that an osmotically stimulated plasma AVP level can be suppressed by baroreflex activation. Either the low-pressure cardiopulmonary receptors (subjected to a rise in central venous pressure during head-down tilt) or the sinoaortic baroreceptors (subjected to hydrostatic effects during head-down tilt) could have been responsible for the suppression of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The distributions of nitroprusside (NP) induced changes in vascular capacitance, arterial versus venous, are unknown. We measured canine ileal arterial and venous pressures and total (isolated loop) vascular volumes (scintigraphy), before and during NP infusion. NP sufficient to decrease perfusion pressure by 30% increased total vascular volume to 111 +/- 3% (+/- SEM) of control (p < 0.01). Increasing flow to restore perfusion pressure increased volume 4% more (p < 0.01). Assuming a two-compartment model and on the basis of the literature data, changes in venous capacitance were estimated and compared with arterial capacitance. During constant-flow perfusion, NP increased venous volume by 10.0% (vs. 18.1%, arterial). When flow was increased to restore pressure, venous volume increased by another 3.7% (vs. 2.6%, arterial). Assuming an original arterial to venous volume ratio of 133/1033, the final, constant-pressure increase in venous volume was almost 4 times the arterial increase. In conclusion, the increase in vascular volume during NP infusion was due primarily to similar-magnitude, active increases in venous and arterial capacitances (i.e., rightward shifts in pressure-volume relations). However, as venous volume is so much larger than arterial, the NP-induced increase in venous volume was greater.  相似文献   

15.
External pneumatic compression of the lower legs is effective as prophylaxis against deep vein thrombosis. In a typical application, inflatable cuffs are wrapped around the patient's legs and periodically inflated to prevent stasis, accelerate venous blood flow, and enhance fibrinolysis. The purpose of this study was to examine the stress distribution within the tissues, and the corresponding venous blood flow and intravascular shear stress with different external compression modalities. A two-dimensional finite element analysis (FEA) was used to determine venous collapse as a function of internal (venous) pressure and the magnitude and spatial distribution of external (surface) pressure. Using the one-dimensional equations governing flow in a collapsible tube and the relations for venous collapse from the FEA, blood flow resulting from external compression was simulated. Tests were conducted to compare circumferentially symmetric (C) and asymmetric (A) compression and to examine distributions of pressure along the limb. Results show that A compression produces greater vessel collapse and generates larger blood flow velocities and shear stresses than C compression. The differences between axially uniform and graded-sequential compression are less marked than previously found, with uniform compression providing slightly greater peak flow velocities and shear stresses. The major advantage of graded-sequential compression is found at midcalf. Strains at the lumenal border are approximately 20 percent at an external pressure of 50 mmHg (6650 Pa) with all compression modalities.  相似文献   

16.
Venous occlusion strain gauge plethysmography (VOP) is based on the assumption that the veins are occluded and arterial inflow is undisturbed by the venous cuff pressure. Literature is not clear concerning the pressure that should be used. The purpose of this study was to determine the optimal venous occlusion pressure at which the highest arterial inflow is achieved in the forearm, calf, and leg by using VOP. We hypothesized that, for each limb segment, an optimal (range of) venous cuff pressure can be determined. Arterial inflow in each limb segment was measured in nine healthy individuals by VOP by using pressures ranging from 10 mmHg up to diastolic blood pressure. Arterial inflows were similar at cuff pressures between 30 and 60 mmHg for the forearm, leg, and calf. Arterial inflow in the forearm was significantly lower at 10 mmHg compared with the other cuff pressures. In addition, arterial inflows at 20 mmHg tended to be lower in each limb segment than flow at higher cuff pressures. In conclusion, no single optimum venous cuff pressure, at which a highest arterial inflow is achieved, exists, but rather a range of optimum cuff pressures leading to a similar arterial inflow. Venous cuff pressures ranging from 30 mmHg up to diastolic blood pressure are recommended to measure arterial inflow by VOP.  相似文献   

17.
The effect on elastic stockings on ambulatory venous pressure was investigated in 22 limbs with deep venous insufficiency. The failure of some elastic stockings to reduce the ambulatory venous pressure in some limbs is due to the lack of graduated compression, which is caused by ankle-calf disproportion--narrow ankles and wide calves. This can be recognised by using the pressure-girth profile and corrected by specially made stockings with increased tension at the ankle. A pressure-girth profile established for each stocking enabled the exact compression exerted by the stocking along the length of each limb to be determined. Elastic stockings exerting a graduated compression between ankle and calf induced a reduction in the ambulatory venous pressure in all but one limb. The greater the degree of graduated compression between ankle and calf exerted by the stocking, the greater the fall in ambulatory venous pressure. This may explain the beneficial effect of compression in limbs with venous ulceration.  相似文献   

18.
The possibility of reverse perfusion of the brain (in which arterial blood flows to brain tissues through venous vessels, and venous blood is drained by the arteries) was studied in acute and chronic experiments on dogs. Blood pressure in cerebral veins could reach 90--120 mm Hg, in Willisii arteries it was 5--35 mm Hg. Liquor pressure reached 20--35 mmHg. After temporary arterialization of the brain venous system (10, 30 and 60 min) the animals survived without impairment of the brain function and behaviour. In the future reverse perfusion of the brain (in which blood pressure in the arteries falls to the level of venous pressure) could be used as a means of urgent surgical intervention in cases of threatened or beginning intracranial arterial hemorrhage.  相似文献   

19.
In perfusion of the cat hemodynamically isolated kidney with a constant blood flow volume, responses of venous vessels to noradrenaline did not depend on the venous outflow pressure level and only involved a diminishing of the blood filling which distinguishes kidneys from other organs. The renal veins' capacity decreased in response to noradrenaline practically completely disappears in high values of the venous outflow pressure. The renal capillary filtration coefficient was shown to equal 0.21 +/- 0.11, whereas the effect of changes in renal vein's pressure on implementation of the microvessels' exchange function in determined by the shifts of capillary hydrostatic pressure.  相似文献   

20.
Tsui CP  Sung JJ  Leung FW 《Life sciences》2003,73(9):1115-1129
Time-course studies revealed the increased susceptibility of the gastric mucosa to noxious injury in portal hypertension correlates with the level of elevated portal venous pressure and hyperglucagonemia. Whether acute elevation of portal venous pressure by exogenous glucagon aggravates such injury is not known. We tested the hypothesis that glucagon in a dose sufficient to acutely elevate portal venous pressure aggravates noxious injury of the gastric mucosa in rats with portal hypertension. Infusion of a portal hypotensive dose of somatostatin should reverse these changes. In anesthetized rats with portal vein ligation, glucagon, somatostatin or the combination was administered intravenously in a randomized, coded fashion. Acidified ethanol-induced gastric mucosal injury was determined. Portal venous pressure and gastric mucosal perfusion and oxygenation (reflectance spectrophotometry) were monitored to confirm the effects of the respective intravenous treatments. Exogenous glucagon exacerbated acidified ethanol-induced gastric mucosal injury. The exacerbation was attenuated by somatostatin. These changes paralleled the portal hypertensive and hypotensive effects of glucagon and somatostatin, respectively. Our data suggest that a unique mechanism is triggered with the onset of portal hypertension. In an antagonistic manner, glucagon and somatostatin modulate this novel mechanism that controls portal venous pressure and susceptibility of the gastric mucosa to noxious injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号