首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The effects of beta-adrenergic blockade upon myocardial blood flow and oxygen balance during exercise were evaluated in eight conscious dogs, instrumented for chronic measurements of coronary blood flow, left ventricular pressure, aortic blood pressure, heart rate, and sampling of arterial and coronary sinus venous blood. The administration of propranolol (1.5 mg/kg iv) produced a decrease in heart rate, peak left ventricular (LV) dP/dt, LV (dP/dt/P, and an increase in LV end-diastolic pressure during exercise. Mean coronary blood flow and myocardial oxygen consumption were lower after propranolol than at the same exercise intensity in control conditions. The oxygen delivery-to-oxygen consumption ratio and the coronary sinus oxygen content were also significantly lower. It is concluded that the relationship between myocardial oxygen supply and demand is modified during exercise after propranolol, so that a given level of myocardial oxygen consumption is achieved with a proportionally lower myocardial blood flow and a higher oxygen extraction.  相似文献   

2.
To investigate the effect of local dehydration on heart rate and blood pressure during static exercise, six healthy male subjects performed exercise of the calf muscles with different extracellular volumes of the working muscles. Exercise consisted of 5 min of static calf muscle contractions at about 10% of maximal voluntary contraction. The body position during exercise was identical in all tests, i.e. supine with the knee joint 90 degrees flexed. During a 25-min pre-exercise period three different protocols were employed to manipulate the calf volume. In test A the subjects rested in the exercise position; in test B the body position was the same as in A but calf volumes were increased by venous congestion [cuffs inflated to 10.67 kPa (80 mmHg)]; in test C the calf volumes were decreased by lifting the calves about 40 cm above heart level with the subjects supine. To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mmHg 5 min before the onset of exercise. This occlusion was maintained for 1 min after the termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in tests B and C until the cuffs were deflated, indicating that only calf muscles contributed to the neurogenic peripheral drive. It is concluded that extracellular muscle volume plays a significant role in adjusting heart rate and blood pressure during static exercise.  相似文献   

3.
Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the mediator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K(+)(ATP) channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward betaadrenoceptor coronary vasodilation that accounts for approximately 25% of coronary vasodilation observed during exercise. There is also a feed-forward alpha-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.  相似文献   

4.
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.  相似文献   

5.
To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions seriously impeded calf blood flow. Consequently, blood flow occurred mainly between contractions and reached a plateau that lasted at least the final 100 s of each exercise series. After exercise the blood flow decreased much faster in the sitting and standing postures than in the supine posture. There was no difference in blood flow between various postures during the same submaximal exercise. However, subjects in the standing posture were able to perform exercise with a higher load than in the supine posture, and blood flow in the standing posture could become twice as high as in the supine posture. We conclude that calf blood flow is regulated according to needs; available perfusion pressure determined maximal blood flow and exercise; and compared with the supine posture, the standing posture and calf muscle pump increase the perfusion pressure.  相似文献   

6.
The volume of interstitial fluid in the limbs varies considerably, due to hydrostatic effects. As signals from working muscle, responsible for much of the cardiovascular drive, are assumed to be transmitted in this compartment, blood pressure and heart rate could be affected by local or systemic variations in interstitial hydration. Using a special calf ergometer, eight male subjects performed rhythmic aerobic plantar flexions in a supine position with dependent calves for periods of 7 min. During exercise heart rate, blood pressure, oxygen uptake (VO2) and blood lactate concentrations were measured in two different tests, one before and after interstitial calf dehydration through limb elevation for 25 min, compared to the other, a control with unaltered fluid volume in a maintained working position. Impedance plethysmography showed calf volume to be stabilized in the control position. Leg elevation by passive hip flexion to 90 degrees resulted in a fast (vascular) volume decrease lasting less than 2 min, followed by a slow linear fluid loss from the interstitial compartment. Then, when returned to the control position, adjustment of vascular volume was completed within 2 min and exercise could be performed with dehydration remaining in the interstitium only. Cardiovascular response was identical at the start of both tests. However, exercising with dehydrated calves elicited a significantly larger increase in heart rate compared to the control, whereas VO2 was identical. The blood pressure response was shown to be only slightly enhanced. Structural interstitial features varying with hydration, most likely chemical or mechanical ones, may have been responsible for this amplification of signals.  相似文献   

7.
A procedure was developed that enables measurement of rapid variations in calf blood flow during voluntary rhythmic contraction of the calf muscles in supine, sitting, and standing positions. During the exercise, maximum blood velocity is measured by Doppler ultrasound equipment in the popliteal artery. The Doppler signals are calibrated by plethysmography to enable calculation of blood flow during exercise in ml.100 ml-1.min-1. Knowledge of the cross-sectional area of the vessel and the angle of insonation is not required in this procedure. Evaluation of the calibration method with 10 healthy volunteers showed that for each subject a new calibration was necessary after a change in posture; the relationship between the blood flow and the maximum Doppler frequency averaged over one heart cycle was linear for each calibration.  相似文献   

8.
When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.  相似文献   

9.
Matching coronary blood flow to myocardial oxygen consumption.   总被引:7,自引:0,他引:7  
At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the local feedback control mechanism remains unknown. Physiological local metabolic control is not due to adenosine, ATP-dependent K(+) channels, nitric oxide, prostaglandins, or inhibition of endothelin. Adenosine and ATP-dependent K(+) channels are involved in pathophysiological ischemic or hypoxic coronary dilation and myocardial protection during ischemia. Sympathetic beta-adrenoceptor-mediated feedforward arteriolar vasodilation contributes approximately 25% of the increase in coronary blood flow during exercise. Sympathetic alpha-adrenoceptor-mediated vasoconstriction in medium and large coronary arteries during exercise helps maintain blood flow to the vulnerable subendocardium when cardiac contractility, heart rate, and myocardial oxygen consumption are high. In conclusion, several potential mediators of local metabolic control of the coronary circulation have been evaluated without success. More research is needed.  相似文献   

10.
We examined the central hemodynamic (n = 5) and leg blood flow (n = 9) responses to one- and two-leg bicycle exercise in nine ambulatory patients with chronic heart failure due to left ventricular systolic dysfunction (ejection fraction 17 +/- 9%). During peak one- vs. two-leg exercise, leg blood flow (thermodilution) tended to be higher (1.99 +/- 0.91 vs. 1.67 +/- 0.91 l/min, P = 0.07), whereas femoral arteriovenous oxygen difference was lower (13.6 +/- 3.1 vs. 15.0 +/- 2.9 ml/dl, P less than 0.01). Comparison of data from exercise stages matched for single-leg work rate during one- vs. two-leg exercise demonstrated that cardiac output was similar while both oxygen consumption and central arteriovenous oxygen differences were lower, indicating relative improvement in the cardiac output response at a given single-leg work rate during one-leg exercise. This was accompanied by higher leg blood flow (1.56 +/- 0.76 vs. 1.83 +/- 0.72 l/min, P = 0.02) and a tendency for leg vascular resistance to be lower (92 +/- 54 vs. 80 +/- 48 Torr.l-1.min, P = 0.08) without any change in blood lactate. These data indicate that, in patients with chronic heart failure, leg vasomotor tone is dynamically regulated, independent of skeletal muscle metabolism, and is not determined solely by intrinsic abnormalities in skeletal muscle vasodilator capacity. Our results suggest that relative improvements in central cardiac function may lead to a reflex release of skeletal muscle vasoconstrictor tone in this disorder.  相似文献   

11.
Eight exercise-trained miniature swine were studied during prolonged treadmill runs (100 min) under fasting and preexercise feeding conditions. Each animal ran at identical external work loads that corresponded to 65% of the heart rate reserve (210-220 beats/min) for the two exercise bouts. Cardiac outputs and stroke volumes were higher and heart rates lower for fed than for fasting runs (P less than 0.05). Preexercise feeding did not alter oxygen consumption, core temperature, mean arterial pressure, and arterial-mixed venous oxygen difference during prolonged exercise; however, mixed venous lactate concentration was lower at end exercise than during fasting conditions (1.2 vs. 2.6 mM, P less than 0.05). Microsphere measurements of regional blood flow revealed significantly higher total gastrointestinal flow (23%) for fed than for fasting conditions. Throughout the exercise bout, blood flow to the biceps femoris, semitendinosus, and tibialis anterior muscles was lower in fed than in fasted animals (P less than 0.05). Combined hindlimb muscle blood flow averaged 15 ml.min-1.100 g-1 (18%, P less than 0.05) lower under feeding than fasting run conditions. These findings provide further evidence that cardiovascular reflexes originate in the gut after feeding to increase cardiac output and redistribute a portion of the blood flow away from active muscle to the gastrointestinal tract during prolonged exercise.  相似文献   

12.
Increased blood pressure (BP) and heart rate during exercise characterizes the exercise pressor reflex. When evoked by static handgrip, mechanoreceptors and metaboreceptors produce regional changes in blood volume and blood flow, which are incompletely characterized in humans. We studied 16 healthy subjects aged 20-27 yr using segmental impedance plethysmography validated against dye dilution and venous occlusion plethysmography to noninvasively measure changes in regional blood volumes and blood flows. Static handgrip while in supine position was performed for 2 min without postexercise ischemia. Measurements of heart rate and BP variability and coherence analyses were used to examine baroreflex-mediated autonomic effects. During handgrip exercise, systolic BP increased from 120 +/- 10 to 148 +/- 14 mmHg, whereas heart rate increased from 60 +/- 8 to 82 +/- 12 beats/min. Heart rate variability decreased, whereas BP variability increased, and transfer function amplitude was reduced from 18 +/- 2 to 8 +/- 2 ms/mmHg at low frequencies of approximately 0.1 Hz. This was associated with marked reduction of coherence between BP and heart rate (from 0.76 +/- 0.10 to 0.26 +/- 0.05) indicative of uncoupling of heart rate regulation by the baroreflex. Cardiac output increased by approximately 18% with a 4.5% increase in central blood volume and an 8.5% increase in total peripheral resistance, suggesting increased cardiac preload and contractility. Splanchnic blood volume decreased reciprocally with smaller decreases in pelvic and leg volumes, increased splanchnic, pelvic and calf peripheral resistance, and evidence for splanchnic venoconstriction. We conclude that the exercise pressor reflex is associated with reduced baroreflex cardiovagal regulation and driven by increased cardiac output related to enhanced preload, cardiac contractility, and splanchnic blood mobilization.  相似文献   

13.
This study was designed to examine the physiological and biochemical effects of wearing heel-less shoes over a wide range of walking speeds. Six male students wearing alternately regular shoes and heel-less shoes walked at the constant speeds of 60, 80, 100 and 120 m/min for 10 min on a treadmill at 0% grade. The average heart rate was higher during heel-less shoe trials than when subjects walked in regular shoes at each speed, but differences were not significant. The calf blood flow showed its highest mean value at 80 m/min when subjects walked in heel-less shoes, and at 100 m/min when they walked in regular shoes. However, at walking speeds higher than these, calf blood flow decreased for wearers of both types of shoes. The calf blood flow after 80 m/min was higher when walking in heel-less rather than regular shoes. Blood lactate concentration after walking in heel-less shoes at 120 m/min was significantly higher than basal level, but after walking in regular shoes it was unchanged from the level before walking. Noradrenaline concentration at 120 m/min while walking in heel-less shoes was significantly higher than while walking in regular shoes. In conclusion, walking exercise in heel-less shoes induced an increase of the calf blood flow at a moderate speed, and increased glycogen metabolism and noradrenaline secretion at a faster speed.  相似文献   

14.
This study tested whether alpha-adrenoceptor-mediated coronary vasoconstriction is augmented during exercise in diabetes mellitus. Experiments were conducted in dogs instrumented with catheters in the aorta and coronary sinus and with a flow transducer around the circumflex coronary artery. Diabetes was induced with alloxan monohydrate (n = 8, 40 mg/kg i.v.). Arterial plasma glucose concentration increased from 4.7 +/- 0.2 mM in nondiabetic, control dogs (n = 8) to 21.4 +/- 1.9 mM 1 wk after alloxan injection. Coronary blood flow, myocardial oxygen consumption (MVo(2)), aortic pressure, and heart rate were measured at rest and during graded treadmill exercise before and after infusion of the alpha-adrenoceptor antagonist phentolamine (1 mg/kg iv). In untreated diabetic dogs, exercise increased MVo(2) 2.7-fold, coronary blood flow 2.2-fold, and heart rate 2.3-fold. Coronary venous Po(2) fell as MVo(2) increased during exercise. After alpha-adrenoceptor blockade, exercise increased MVo(2) 3.1-fold, coronary blood flow 2.7-fold, and heart rate 2.1-fold. Relative to untreated diabetic dogs, alpha-adrenoceptor blockade significantly decreased the slope of the relationship between coronary venous Po(2) and MVo(2). The difference between the untreated and phentolamine-treated slopes was greater in the diabetic dogs than in the nondiabetic dogs. In addition, the decrease in coronary blood flow to intracoronary norepinephrine infusion was significantly augmented in anesthetized, open-chest, beta-adrenoceptor-blocked diabetic dogs compared with the nondiabetic dogs. These findings demonstrate that alpha-adrenoceptor-mediated coronary vasoconstriction is augmented in alloxan-induced diabetic dogs during physiological increases in MVo(2).  相似文献   

15.
The effects of compression on gastrocnemius medialis muscle oxygenation and hemodynamics during a short-term dynamic exercise was investigated in a sample of 15 male subjects (mean ± SD; age 25.8 ± 4.9 years; mass 70.6 ± 4.3 kg). Elastic compression sleeves were used to apply multiple levels of compression to the calf muscles during exercise, and noncompressive garments were used for the control condition. Tissue hemoglobin oxygen saturation was measured as the relative "tissue oxygen index" (TOI) with a near-infrared spectrometer. The recovery of TOI during exercise was determined from the slope of oxygenation recovery in a nonoccluded situation. The TOI recovery rate during the first 2 minutes of the exercise was 24% higher (p = 0.042) for the compression condition than for the control condition. A significant correlation (r = 0.61, p = 0.012) between the level of compression and the tissue oxygenation recovery during exercise was observed. Muscle energy use was determined from the rate of decline of TOI immediately upon arterial occlusion during early exercise. Muscle energy use measured during the occluded situation was not significantly influenced by compression. Based on these results, it was concluded that compression induced changes in tissue blood flow and perfusion appear to result in improved oxygenation during short-term exercise. Assuming that increased muscle oxygen availability positively influences performance, compression of muscles may enhance performance especially in sports that require repeated short bouts of exercise.  相似文献   

16.
Sildenafil, a selective inhibitor of phosphodiesterase type 5, produces relaxation of isolated epicardial coronary artery segments by causing accumulation of cGMP. Because shear-induced nitric oxide-dependent vasodilation is mediated by cGMP, this study was performed to determine whether sildenafil would augment the coronary resistance vessel dilation that occurs during the high-flow states of exercise or reactive hyperemia. In chronically instrumented dogs, sildenafil (2 mg/kg per os) augmented the vasodilator response to acetylcholine, with a leftward shift of the dose-response curve relating coronary flow to acetylcholine dose. Sildenafil caused a 6. 7 +/- 2.1 mmHg decrease of mean aortic pressure, which was similar at rest and during treadmill exercise (P < 0.05), with no change of heart rate, left ventricular (LV) systolic pressure, or LV maximal first time derivative of LV pressure. Sildenafil tended to increase myocardial blood flow at rest and during exercise (mean increase = 14 +/- 3%; P < 0.05 by ANOVA), but this was associated with a significant decrease in hemoglobin, so that the relationship between myocardial oxygen consumption and oxygen delivery to the myocardium (myocardial blood flow x arterial O(2) content) was unchanged. Furthermore, sildenafil did not alter coronary venous PO(2), indicating that the coupling between myocardial blood flow and myocardial oxygen demands was not altered. In addition, sildenafil did not alter the peak coronary flow rate, debt repayment, or duration of reactive hyperemia that followed a 10-s coronary occlusion. The findings suggest that cGMP-mediated resistance vessel dilation contributes little to the increase in myocardial flow that occurs during exercise or reactive hyperemia.  相似文献   

17.
目的: 探讨整体整合生理学医学新理论指导下,根据心肺运动试验(CPET)制定个体化精准运动整体方案对整体功能状态的影响。方法: 李xx,女,31岁,自幼心率快(90~100 bpm),平时手脚冰凉,秋冬季为甚,既往体健。2019年9月底在阜外医院签署知情同意书后行CPET,峰值摄氧量、无氧阈(AT)和峰值心排量分别为(69~72)%pred,摄氧通气效率和二氧化碳排出通气效率基本正常(96~100)%pred。静息心率快、血压偏低,运动过程中血压反应弱,以心率升高为主。整体整合生理学医学理论认为其自身虚弱,且以心脏弱为主。以CPET指导个体化精准运动强度进行滴定,结合连续逐搏血压、心电、脉搏和血糖动态监测制定个体化定量运动整体方案,实施8周强化管理后复查CPET等。结果: 经整体强化管理8周后四肢温暖,发凉症状消失。复查CPET峰值摄氧量、无氧阈和峰值心排量分别为(90~98)%pred,分别提高30%~36%,虚弱的整体功能状态得到显著提升;基本正常的摄氧通气效率和二氧化碳排出通气效率也分别提高10%~37%;静息心率和血压基本恢复正常,运动中血压和心率反应均正常。连续动态血糖监测提示血糖平均水平略下降,更趋于平稳,连续心电、逐搏血压等的重复测定结果也提示静息、运动全程和睡眠期间的心率降低、血压提升,桡动脉脉搏波的重搏波幅度加大,变得更加明显。结论: 新理论体系指导CPET制定个体化精准运动整体方案可以安全有效增强心肌收缩力、增加每搏输出量,提升血压、降低心率,稳定并略降低血糖,提高整体功能状态。  相似文献   

18.
beta-Adrenergic receptor density and responsiveness may be increased in experimental animals by physical conditioning, and the opposite effects have been observed after a single bout of exercise. To determine whether the chronic and acute effects of exercise include similar alterations in cardiovascular function in humans, we characterized heart rate, blood pressure, and distal lower extremity blood flow responses to graded-dose isoproterenol infusion in 15 young healthy subjects before and after exercise training and with and without a single preceding bout of prolonged exercise of either low or high intensity (61 +/- 1 or 82 +/- 1% maximal heart rate). VO2max was increased 18% after exercise training (43.2 +/- 2.7 to 51.1 +/- 3.3 ml.kg-1.min-1; P less than 0.001). Despite a concomitant fall in resting heart rate (59 +/- 3 to 50 +/- 2 beats/min; P less than 0.001), chronotropic and lower extremity blood flow responses to isoproterenol remained unchanged. Similarly, 1 h of acute high-intensity treadmill exercise altered baseline heart rate (58 +/- 4 to 74 +/- 5 beats/min; P less than 0.02), but neither low- nor high-intensity acute exercise influenced heart rate or lower extremity blood flow responses to isoproterenol. In contrast, the systolic pressure response to isoproterenol was blunted after high- but not low-intensity prolonged exercise (P less than 0.02). These data indicate that cardiac chronotropic (primarily beta 1) and vascular (beta 2) adrenergic agonist responses are not altered in humans by training or acute exercise. The systolic blood pressure response to beta-adrenergic stimulation is decreased by a single bout of high-intensity prolonged exercise by mechanisms that remain to be defined.  相似文献   

19.
The purpose of the present study was to examine the effect of maximal arm exercise on the skin blood circulation of the paralyzed lower limbs in persons with spinal cord injury (PSCI). Eight male PSCI with complete lesions located between T3 and L1 performed graded maximal arm-cranking exercise (MACE) to exhaustion. The skin blood flux at the thigh (SBFT) and that at the calf (SBFC) were monitored using laser-Doppler flowmeter at rest and for 15 s immediately after the MACE. The subject's mean peak oxygen uptake and peak heart rate was 1.41 ± 0.22 1·min−1 and 171.6 ± 19.2 beats·min−1, respectively. No PSCI showed any increase in either SBFT or SBFC after the MACE, when compared with the values at rest. These results suggest that the blood circulation of the skin in the paralyzed lower limbs in PSCI is unaffected by the MACE.  相似文献   

20.
Feed-forward and feedback mechanisms are both important for control of the heart rate response to muscular exercise, but their origin and relative importance remain inadequately understood. To evaluate whether humoral mechanisms are of importance, the heart rate response to electrically induced cycling was studied in participants with spinal cord injury (SCI) and compared with that elicited during volitional cycling in able-bodied persons (C). During voluntary exercise at an oxygen uptake of approximately 1 l/min, heart rate increased from 66 +/- 4 to 86 +/- 4 (SE) beats/min in seven C, and during electrically induced exercise at a similar oxygen uptake in SCI it increased from 73 +/- 3 to 110 +/- 8 beats/min. In contrast, blood pressure increased only in C (from 88 +/- 3 to 99 +/- 4 mmHg), confirming that, during exercise, blood pressure control is dominated by peripheral neural feedback mechanisms. With vascular occlusion of the legs, the exercise-induced increase in heart rate was reduced or even eliminated in the electrically stimulated SCI. For C, heart rate tended to be lower than during exercise with free circulation to the legs. Release of the cuff elevated heart rate only in SCI. These data suggest that humoral feedback is of importance for the heart rate response to exercise and especially so when influence from the central nervous system and peripheral neural feedback from the working muscles are impaired or eliminated during electrically induced exercise in individuals with SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号