首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cardiac beta-receptor responsiveness is diminished by both aging and hypertension. However, concomitant decreases in the activity of counterregulatory mechanisms, such as the arterial baroreflex and neuronal catecholamine uptake, influence the ultimate cardiac responses to adrenergic agents in vivo. In the present study, we evaluated by echocardiography cardiac responses to intravenous infusion of epinephrine in 14 young and 18 older normotensive men and women and in 10 young and 17 older hypertensive men and women. To assess the relative contribution of intrinsic cardiac and counterregulatory components to the overall response, infusions were repeated combined with a ganglionic blocker in the young groups. Epinephrine-induced increases in heart rate were similar in the four groups. Increases in stroke volume, ejection fraction, and cardiac index were similar in the two hypertensive and two young normotensive groups. In contrast, they were attenuated in the older normotensive group, resulting in higher left ventricular responses in older hypertensive than in normotensive subjects. Heart rate and left ventricular responses to epinephrine in the presence of ganglionic blockade did not differ between the two young groups. Increases in plasma norepinephrine due to epinephrine infusion were larger in hypertensive than in normotensive subjects. One may conclude that compared with young normotensive subjects, in hypertensive subjects mechanisms increasing versus decreasing cardiac responses to epinephrine may remain in balance, and, compared with older normotensive subjects, older hypertensive subjects exhibit enhanced cardiac responses to sympathetic stimulation.  相似文献   

3.
The effects of pentobarbital (30 mg/kg), urethan (2 g/kg), chloralose/urethan (50 mg/kg, 500 mg/kg), and thiobutabarbital (Inactin, 100 mg/kg) on the mean arterial pressure (BP) and heart period (HP) of Marmota flaviventris were examined. Anesthesia significantly decreased BP by 22-27 mm Hg and HP by 123-151 msec. In a series of paired studies with eight marmots it was found that pentobarbital increased the BP response to phenylephrine and almost abolished the baroreflex HP responses to phenylephrine and nitroglycerin. In another series of animals right carotid occlusion in unanesthetized animals produced greater changes in BP and HP than occlusion of the left carotid. Chloralose/urethan, urethan, or Inactin reduced the reflex BP response to unilateral carotid occlusion by 50% and the HP response by 96%. It was concluded that the anesthetic agents investigated depress baroreflex responses significantly by influencing efferent sympathetic and parasympathetic reflex responses. They, therefore, are not appropriate for cardiovascular studies in acute, anesthetized preparations of the marmot and, perhaps, other hibernating species.  相似文献   

4.
beta-Adrenergic receptor density and responsiveness may be increased in experimental animals by physical conditioning, and the opposite effects have been observed after a single bout of exercise. To determine whether the chronic and acute effects of exercise include similar alterations in cardiovascular function in humans, we characterized heart rate, blood pressure, and distal lower extremity blood flow responses to graded-dose isoproterenol infusion in 15 young healthy subjects before and after exercise training and with and without a single preceding bout of prolonged exercise of either low or high intensity (61 +/- 1 or 82 +/- 1% maximal heart rate). VO2max was increased 18% after exercise training (43.2 +/- 2.7 to 51.1 +/- 3.3 ml.kg-1.min-1; P less than 0.001). Despite a concomitant fall in resting heart rate (59 +/- 3 to 50 +/- 2 beats/min; P less than 0.001), chronotropic and lower extremity blood flow responses to isoproterenol remained unchanged. Similarly, 1 h of acute high-intensity treadmill exercise altered baseline heart rate (58 +/- 4 to 74 +/- 5 beats/min; P less than 0.02), but neither low- nor high-intensity acute exercise influenced heart rate or lower extremity blood flow responses to isoproterenol. In contrast, the systolic pressure response to isoproterenol was blunted after high- but not low-intensity prolonged exercise (P less than 0.02). These data indicate that cardiac chronotropic (primarily beta 1) and vascular (beta 2) adrenergic agonist responses are not altered in humans by training or acute exercise. The systolic blood pressure response to beta-adrenergic stimulation is decreased by a single bout of high-intensity prolonged exercise by mechanisms that remain to be defined.  相似文献   

5.
To identify the effects of exercise recovery mode on cutaneous vascular conductance (CVC) and sweat rate, eight healthy adults performed two 15-min bouts of upright cycle ergometry at 60% of maximal heart rate followed by either inactive or active (loadless pedaling) recovery. An index of CVC was calculated from the ratio of laser-Doppler flux to mean arterial pressure. CVC was then expressed as a percentage of maximum (%max) as determined from local heating. At 3 min postexercise, CVC was greater during active recovery (chest: 40 +/- 3, forearm: 48 +/- 3%max) compared with during inactive recovery (chest: 21 +/- 2, forearm: 25 +/- 4%max); all P < 0.05. Moreover, at the same time point sweat rate was greater during active recovery (chest: 0.47 +/- 0.10, forearm: 0.46 +/- 0.10 mg x cm(-2) x min(-1)) compared with during inactive recovery (chest: 0.28 +/- 0.10, forearm: 0.14 +/- 0.20 mg x cm(-2) x min(-1)); all P < 0.05. Mean arterial blood pressure, esophageal temperature, and skin temperature were not different between recovery modes. These data suggest that skin blood flow and sweat rate during recovery from exercise may be modulated by nonthermoregulatory mechanisms and that sustained elevations in skin blood flow and sweat rate during mild active recovery may be important for postexertional heat dissipation.  相似文献   

6.
Effects of dietary copper on human autonomic cardiovascular function   总被引:1,自引:0,他引:1  
Heart rate and blood pressure responses during supine rest, orthostasis, and sustained handgrip exercise at 30% maximal voluntary contraction were determined in eight healthy women aged 18-36 years who consumed diets varying in copper and ascorbic acid content. Copper retention and plasma copper concentration were not affected by diet. Enzymatic, but not immunoreactive, ceruloplasmin was lower (p less than 0.05) after the low copper and high ascorbic acid diet periods. Diet had no effect on resting supine heart rates, orthostatic responses in heart rate and blood pressure, or standing resting blood pressure. Systolic and diastolic blood pressures were increased significantly (p less than 0.05) during the handgrip test at the end of the low copper and ascorbic acid supplementation periods. Also, the ratio of enzymatic to immunoreactive ceruloplasmin decreased significantly during these dietary treatments. The mean arterial blood pressure at the end of the handgrip test was negatively (p less than 0.0004) correlated with the ceruloplasmin ratios. These findings indicate a functional alteration in human blood pressure regulation during mild copper depletion.  相似文献   

7.
The present paper considers the evolutionary responses of vertebrates to gravitational stressors acting on the cardiovascular system. Inasmuch as the range of published studies addressing gravity's effects on cardiovascular function is limited to relatively few taxa, the perspective developed here is based largely on studies of snakes and a few mammals. A brief review and synthesis of the available data suggest several generalizations concerning the evolutionary responses of form and function to gravity's stress on blood circulation.  相似文献   

8.
Systemic blood pressure and pulse rate responses to intravenously administered adrenaline during hypoxaemia or hyperoxaemia were studied in urethane-anaesthetized rats. Hypoxaemia or hyperoxaemia was induced by ventilating the animals with 15% O2/85% N2 or with 100% O2, respectively. Hypoxaemia significantly decreased the diastolic blood pressure and elevated the pulse rate; the reflex falls in pulse rate in response to adrenaline were significantly reduced. Hyperoxaemia, on the other hand, did not cause remarkable changes in blood pressure or pulse rate, but significantly depressed diastolic blood pressure to adrenaline. It is suggested that the compensatory cardiovascular reflexes may be impaired by hypoxaemia, and that hyperoxaemia reduces vasoconstrictor response to catecholamine possibly by lessening or enhancing the sensitivities of the vascular alpha 1- or beta 2-adrenoceptors, respectively.  相似文献   

9.
In this study we determined whether the decline in exercise stroke volume (SV) observed when endurance-trained men stop training for a few weeks is associated with a reduced blood volume. Additionally, we determined the extent to which cardiovascular function could be restored in detrained individuals by expanding blood volume to a similar level as when trained. Maximal O2 uptake (VO2max) was determined, and cardiac output (CO2 rebreathing) was measured during upright cycling at 50-60% VO2max in eight endurance-trained men before and after 2-4 wk of inactivity. Detraining produced a 9% decline in blood volume (5,177 to 4,692 ml; P less than 0.01) during upright exercise, due primarily to a 12% lowering (P less than 0.01) of plasma volume (PV; Evans blue dye technique). SV was reduced by 12% (P less than 0.05) and VO2max declined 6% (P less than 0.01), whereas heart rate (HR) and total peripheral resistance (TPR) during submaximal exercise were increased 11% (P less than 0.01) and 8% (P less than 0.05), respectively. When blood volume was expanded to a similar absolute level in the trained and detrained state (approximately 5,500 +/- 200 ml) by infusing a 6% dextran solution in saline, the effects of detraining on cardiovascular response were reversed. SV and VO2max were increased (P less than 0.05) by PV expansion in the detrained state to within 2-4% of trained values. Additionally, HR and TPR during submaximal exercise were lowered to near trained values. These findings indicate that the decline in cardiovascular function following a few weeks of detraining is largely due to a reduction in blood volume, which appears to limit ventricular filling during upright exercise.  相似文献   

10.
The results of this study indicated that when stimulus intensity, pulse frequency and train duration were varied the basic topography of the cardiovascular responses to medullary stimulation did not change, but was merely increased or diminished in magnitude. Pressor responses were usually obtained in conscious cats, and also narcosis produced reversal effect on rare occasions. It is suggested that the reversal in cardiovascular responses is probably locus specific, and the medullary loci yielding reversal effect are more limited than those eliciting consequently pressor responses.  相似文献   

11.
A human performance model has been developed and described [9] which portrays the human circulatory, thermo regulatory and energy-exchange systems as an intercoupled set. In this model, steady state or static relationships are used to describe oxygen consumption and blood flow. For example, heart rate (HTRT) is calculated as a function of the oxygen and the thermo-regulatory requirements of each body compartment, using the steady state work values of cardiac output (CO, sum of all compartment blood flows) and stroke volume (SV, assumed maximal after 40% maximal oxygen consumption): HTRT=CO/SV. The steady state model has proven to be an acceptable first approximation, but the inclusion of transient characteristics are essential in describing the overall systems' adjustment to exercise stress. In the present study, the dynamic transient characteristics of heart rate, stroke volume and cardiac output were obtained from experiments utilizing step and sinusoidal forcing of work. The gain and phase relationships reveal a probable first order system with a six minute time constant, and are utilized to model the transient characteristics of these parameters. This approach leads to a more complex model but a more accurate representation of the physiology involved. The instrumentation and programming essential to these experiments are described.  相似文献   

12.
13.
14.
This study examines some of the cardiovascular and respiratory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in anaesthetised dogs. Intravenous injection of PACAP 27 caused an increase in arterial blood pressure and an increase in heart rate. The blood pressure response was significantly reduced by adrenoceptor blockade suggesting a mechanism of action mediated in part via catecholamines. The heart rate increase was unaltered by adrenoceptor blockade suggesting a direct effect of PACAP 27. PACAP 27 also caused potentiation of cardiac slowing caused by stimulation of the vagus nerve. In addition, PACAP 27 powerfully stimulated breathing. This was probably evoked by stimulation of arterial chemoreceptors, because bilateral section of the carotid sinus nerves abolished this effect. PACAP 27 had no effect on the ability of the cardiac sympathetic nerve to increase heart rate, nor on the interaction between the sympathetic and parasympathetic systems in the heart.  相似文献   

15.
16.
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species.  相似文献   

17.
Photoresponses of motile phytoplanktonic flagellates have been widely studied, whereas the behavioural responses of these organisms to temperature, and their potential ecological consequences, have rarely been considered. This study investigated the population responses and individual swimming trajectories of five phylogenetically contrasting species of freshwater flagellates exposed to a gradient of temperature in micro-scale preference chambers. Population responses demonstrated a species-dependent diversity in thermoresponsive behaviour. Across a gradient of 9.8 to 15.1°;C which simulated the typical range of temperature across a thermocline in a temperate monomictic lake, Ceratium furcoides, Chlamydomonas moewusii, Dinobryon sertularia and Plagioselmis nannoplanctica all preferred the highest temperatures. In contrast, Euglena gracilis preferred the lowest temperature. Analysis of the swimming behaviour of individual cells confirmed preferences and demonstrated that, in all species, a combination of tactic and kinetic reactions was responsible for these accumulations. For the first time, controlled positive and negative thermotaxes towards a temperature preference were identified. This thermotactic orientation, in conjunction with a reduction in directionality of response in the preference zone and with ortho- and klino-thermokinesis, enabled cells to maintain position at preferred temperatures. Specifically, in all species apart from P. nannoplanctica, significant ortho-kinetic increases in swimming speed permitted rapid movement of cells away from unfavourable conditions, while a reduction in speed and a klino-kinetic increase in rate of turning (in all five species) maintained position within favoured temperatures. This ability to detect, orientate and accumulate within a temperature gradient may be triggered by physiological processes and presents ecological advantages. Behavioural response to temperature may optimize growth, influence the spatial and temporal distribution of flagellates, particularly the diel position of cells during migration, and contribute to the delineation of niche separation.  相似文献   

18.
19.
Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat—gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)—in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号