首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arbuscular mycorrhizal and dark septate endophytic fungal colonization in a grassland in Kunming, southwest China, was investigated monthly over one year. All plant roots surveyed were co-colonized by arbuscular mycorrhizal and dark septate endophytic fungi in this grassland. Both arbuscular mycorrhizal and dark septate endophytic fungal colonization fluctuated significantly throughout the year, and their seasonal patterns were different in each plant species. The relationships between environmental (climatic and edaphic) factors and fungal colonization were also studied. Correlation analysis demonstrated that arbuscular mycorrhizal colonization was significantly correlative with environmental factors (rainfall, sunlight hours, soil P, etc.), but dark septate endophytic fungal colonization was only correlative with relative humidity and sunlight hours.  相似文献   

2.
Usuki F  Narisawa K 《Mycologia》2007,99(2):175-184
Symbiotic microorganisms, such as mycorrhizal fungi, are known to associate with most plants; however members of the Cruciferae are an exception. We investigated nutrient exchange between a dark septate endophytic fungus, Heteroconium chaetospira, and Chinese cabbage plants (Cruciferae) in vitro. Chinese cabbage could not use some amino acids, while the fungus-treated plants were able to use all of the nitrogen forms provided. To demonstrate that nitrogen transfer occurs between the fungus and the host plant, we used a hydrophobic polytetrafluoroethylene (PTFE) membrane compartment system, which restricts diffusion and mass flow of ions and allows only fungal penetration. Our results strongly suggest that H. chaetospira provided nitrogen to the plant, rather than the plant mineralizing available organic nitrogen. In addition carbon transfer from the host plant to the fungus was demonstrated with HPLC and (l3)CO2-labeling experiments. When H. chaetospira colonized host plant roots under low glucose condition, ergosterol content in culture pot (as an index of fungal biomass) increased significantly compared to the fungal treatment without a host plant. Sucrose concentration in the host root significantly decreased as a result of fungal colonization, and mannitol (a specific carbon source to fungal cells) increased in the roots. Sucrose and mannitol in the host root treated with the fungus were labeled clearly by 13C after 1C-labeled CO2 was provided to the plant. These results suggest that the fungus obtained carbon, mainly as sucrose, from the host plant. We show for the first time the existence of a fungus establishing a mutualistic association with a nonmycorrhizal Cruciferae plant.  相似文献   

3.
To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97 % of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.  相似文献   

4.
Muthukumar T  Udaiyan K 《Mycorrhiza》2002,12(4):213-217
Root and soil samples of three potted or ground-grown cycads ( Cycas circinalis, C. revoluta, Zamiasp.) were collected between November 1999 and June 2000 and surveyed for arbuscular mycorrhizal (AM) colonization and spore populations. AM fungi were associated with all root systems and rhizosphere samples examined. Root colonization was of a typical Arum type and AM colonization levels differed significantly between species and between potted and ground-grown cycads. Mycorrhizal colonization levels were inversely related to root hair number and length. Spores of nine morphotypes belonging to three genera ( Acaulospora, Glomus, Scutellospora) were extracted from soil. The percentage root length colonized by AM fungi was not related to soil factors, but total AM fungal spore numbers in the rhizosphere soil were inversely related to soil nitrogen and phosphorus levels. AM fungal spore numbers in the soil were linearly related to root length colonized. The co-occurrence of septate non-mycorrhizal fungi was recorded for the first time in cycads. These observations and the relationship between plant mycorrhizal status and soil nutrients are discussed.  相似文献   

5.
Endophytic fungi residing in Panax quinquefolium (American ginseng) have not been well characterized. We collected American ginseng of one-, two-, three- and four-year-old plants cultivated in a forest reserve and identified the endophytic fungal isolates using traditional methods. The colonization frequency and the dominant endophytic fungal species were investigated. Endophytic fungal diversity indices and similarity coefficient were also assessed and all age groups of American ginseng studied were colonized by endophytic fungal assemblages; 134 fungal isolates were assigned to 27 taxa. The infection frequencies varied with the host age and tissue. The dominant endophytic fungi were recorded for each tissue and age of host. The roots of two- and four-year-old American ginseng exhibited the highest and the lowest Shannon-Wiener index respectively. Four-year-old American ginseng had a low similarity coefficient when compared with each of the other three ages classes. The possible role of endophytic fungi in relation to American ginseng cultivation is discussed.  相似文献   

6.
Barrow JR 《Mycorrhiza》2003,13(5):239-247
Native grasses of semi-arid rangelands of the southwestern USA are more extensively colonized by dark septate endophytes (DSE) than by traditional mycorrhizal fungi. Roots of dominant grasses ( Bouteloua sp.) native to arid southwestern USA rangelands were prepared and stained using stains specific for fungi (trypan blue) and for lipids (sudan IV). This revealed extensive internal colonization of physiologically active roots by atypical fungal structures that appear to function as protoplasts, without a distinguishable wall or with very thin hyaline walls that escape detection by methods staining specifically for fungal chitin. These structures were presumed to be active fungal stages that progressed to form stained or melanized septate hyphae and microsclerotia characteristic of DSE fungi within dormant roots. The most conspicuous characteristic of these fungi were the unique associations that formed within sieve elements and the accumulation of massive quantities of lipids. This interface suggests a biologically significant location for carbon transfer between the plant and fungus. The continuous intimate association with all sieve elements, cortical and epidermal cells as well as external extension on the root surface and into the soil indicates that they are systemic and considerably more prevalent than previously thought. A fungal network associated with a mucilaginous complex observed on the root surface and its potential role in root function in dry soil is discussed. It is suggested that those fungi that non-pathogenically and totally colonize plant cells be classed as systemic endophytic fungi (SEF). This would refine the broad designation of DSE fungi. The potential mutualistic benefit of SEF for native plants in arid ecosystems based on the extent of lipid accumulation and its apparent distribution is discussed.  相似文献   

7.
We studied extent and type of arbuscular mycorrhizal (AM) and septate endophytic (SE) fungal associations in five lycophytes and 50 ferns collected from Eastern and Western Ghats regions. Of the 54 species and one variety (belonging to 31 genera) examined; 54 taxa had AM association and AM fungal structures were absent in Marsilea quadrifolia. This is the first report of AM and SE fungal status for 26 species each. Of the 55 taxa examined, AM morphology has been evaluated for the first time in 51 species. The hydrophytic fern Salvinia molesta was mycorrhizal and non-mycorrhizal at different sites. All the epiphytic and saxicolous species examined were mycorrhizal. The percentage of AM colonization ranged from 22.23 (Christella parasitica) to 82.20 (Adiantum lunulatum) in ferns and 53.46 (Selaginella bryopteris) to 84.34 (Selaginella sp.) in lycophytes. Epiphytic life-forms had the maximum average AM colonization levels, whereas aquatic life-forms had the minimum colonization levels. The percentage root length colonized by septate fungi ranged between 0.59 in Ophioglossum reticulatum and 16.36 in Pteris pellucida. The root length with AM and SE fungal structures as well as their total colonization significantly varied among the taxa examined. Most of the lycophytes and ferns had intermediate-type of AM morphology with a few exhibiting Paris-type. AM fungal spore numbers ranged from 1.0 (Angiopteris evecta, Pteridium aquilinum) to (Nephrolepis exaltata) 9.3 spores per 25 g soil and varied significantly among taxa. AM fungal spore morphotypes belonging to Claroideoglomus, Funneliformis, Glomus and Rhizophagus were recorded.  相似文献   

8.
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.  相似文献   

9.
Dark septate endophytic fungi (DSE) may have an important functional relationship with host plants, but these functions and the colonization process remain unknown. We made microscopic observations of the growth of an endophytic hyphomycete in Chinese cabbage roots to understand its colonization process. This hyphomycete was Heteroconium chaetospira, a suspected DSE. Three weeks post inoculation, some hyphae became irregularly lobed and formed microsclerotia within host epidermal cells of healthy plants. In stunted plants, hyphae formed closely packed masses of fungal cells within host epidermal cells, but conidiophores rarely broke through the cell walls to produce conidia. Received: December 7, 2000 / Accepted: November 20, 2001  相似文献   

10.
Shrub willows (Salix spp.) form associations with arbuscular mycorrhizal (AM), ectomycorrhizal (EM) and dark septate endophytic (DSE) fungi. Willow root colonization by these three types of fungi was studied on a deglaciated forefront of Lyman Glacier, Washington, USA. Root colonization was low; less than 1% of the root length was colonized by AM and 25.6% by DSE. EM colonized 25% of the root tips and 19.4% of the root length. AM and DSE colonization were not related to distance from the present glacier terminus or to canopy cover. EM colonization increased with distance from the glacier terminus based on gridline intercept data but not on root tip frequency data. Availability of propagules in the substrate was low, but numbers of propagules increased with distance from the glacier terminus. The EM communities were dominated by three ascomycetes showing affinity to Sordariaceae in BLAST analyses. Other frequent taxa on the glacier forefront included species of Cortinariaceae, Pezizaceae, Russulaceae, Thelephoraceae and Tricholomataceae. When occurrence of individual taxa was used as a response variable to canopy cover, distance from the glacier terminus, and their interaction, four different fungal guilds were identified: 1) fungi that did not respond to these environmental variables; 2) fungi that occurred mainly in intercanopy areas and decreased with distance from the glacier terminus; 3) fungi that were insensitive to canopy cover but increased with distance from the glacier terminus; 4) fungi that occurred mainly under willow canopies and increased with distance from the glacier terminus. We suggest that fungal colonization is mainly limited by fungal propagule availability. Environmental conditions may also limit successful establishment of plant-fungus associations. We propose that the four EM guilds partly explain successional dynamics. The initial EM community comprises fungi that tolerate low organic matter and nitrogen environment (first and second guilds above). During later community development, these fungi are replaced by those that benefit from an increased organic matter and nitrogen environment (third and fourth guilds above).  相似文献   

11.
Seasonality of root fungal colonization in low-alpine herbs   总被引:7,自引:0,他引:7  
Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungal colonization of Alchemilla glomerulans, Carex vaginata, Ranunculus acris ssp. pumilus and Trollius europaeus growing in low-alpine meadows in the Finnish subarctic were studied at different times during the growing season. Fungal colonization was correlated to soil soluble phosphorus (P) concentration. The influence of flower bud removal on fungal colonization was investigated in A. glomerulans, C. vaginata and R. acris and the correlation between AM and DSE colonization was studied. The fungal colonization patterns were found to be species-specific. R. acris maintained a relatively high rate of fungal colonization throughout the summer, while the rates of colonization of T. europaeus were lower and decreased towards the end of the season. A. glomerulans had constant arbuscular and vesicular colonization throughout the summer, but hyphal and DSE colonization declined towards the end of the season. C. vaginata did not form arbuscular mycorrhiza, but was colonized by DSE fungi and hyaline septate hyphae throughout the season. The soil soluble P concentration showed some seasonal variation, but was also highly variable between the study sites. Bud removal decreased arbuscular colonization of R. acris, but no unique effects were seen in any other parameters or the other species studied. The root fungal parameters correlated with soil P in some species at some sites, but no consistent trend was found. DSE colonization was positively correlated with root vesicular and hyphal colonization in some cases. The differences in fungal colonization parameters may be related to species-specific phenologies.  相似文献   

12.
As herbivory usually leads to loss of photosynthesizing biomass, its consequences for plants are often negative. However, in favorable conditions, effects of herbivory on plants may be neutral or even beneficial. According to the compensatory continuum hypothesis plants can tolerate herbivory best in resource-rich conditions. Besides herbivory, also primarily positive biotic interactions like mycorrhizal symbiosis, bear carbon costs. Tritrophic plant–fungus–herbivore interaction further complicates plant's cost-benefit balance, because herbivory of the host plant is expected to cause decline in mycorrhizal colonization under high availability of soil nutrients when benefits of symbiosis decline in relation to costs. To gain insight into above interactions we tested the effects of plant size and resource manipulation (simulated herbivory and fertilization) on both above-ground performance and on root fungal colonization of the biennial Gentianella campestris.Clipping caused allocation shift from height growth to branches in all groups except in large and fertilized plants. For large plants nutrient addition may have come too late, as the number of meristems was most likely determined already before the fertilization. Clipping decreased the amount of DSE (dark septate endophytic) fungi which generally are not considered to be mycorrhizal. The effect of clipping on total fungal colonization and colonization by arbuscular mycorrhizal (AM) fungal coils were found to depend on host size and resource level. Dissimilar mycorrhizal response to simulated herbivory in small vs. large plants could be due to more intensive light competition in case of small plants. Carbon limited small plants may not be able to maintain high mycorrhizal colonization, whereas large clipped plants allocate extra resources to roots and mycorrhizal fungi at the expense of above-ground parts. Our results suggest that herbivory may increase carbon limitation that leads re-growing shoots and fungal symbionts to function as competing sinks for the limited carbon reserves.  相似文献   

13.
Early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica Borkh) trees were characterized to determine the relationship of these events to fine root growth rate and development. New roots were traced on root windows to measure growth and then collected and stained to quantify microscopically the presence of mycorrhizal and nonmycorrhizal fungal structures. Most new roots were colonized by either mycorrhizal or nonmycorrhizal fungi but none less 25 days old were ever internally colonized by both. Compared to nonmycorrhizal colonization, mycorrhizal colonization was associated with faster growing roots and roots that grew for a longer duration, leading to longer roots. While either type of fungi was observed in roots as soon as 3 days after root emergence, intraradical colonization by mycorrhizal fungi was generally faster (peaking at 7 to 15 days) than that by nonmycorrhizal fungi and often occurred more frequently in younger roots. Only 15 to 35% of the roots had no fungal colonization by 30 days after emergence. This study provides the first detailed examination of the early daily events of mycorrhizal and nonmycorrhizal fungal colonization in newly emerging roots under field conditions. We observed marked discrimination of roots between mycorrhizal and nonmycorrhizal fungi and provide evidence that mycorrhizal fungi may select for faster growing roots and possibly influence the duration of root growth by non-nutritional means.  相似文献   

14.
Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.  相似文献   

15.
Liverworts form endophytic associations with fungi that mirror mycorrhizal associations in tracheophytes. Here we report a worldwide survey of liverwort associations with glomeromycotean fungi (GAs), together with a comparative molecular and cellular analysis in representative species. Liverwort GAs are circumscribed by a basal assemblage embracing the Haplomitriopsida, the Marchantiopsida (except a few mostly derived clades), and part of the Metzgeriidae. Fungal endophytes from Haplomitrium, Conocephalum, Fossombronia, and Pellia were related to Glomus Group A, while the endophyte from Monoclea was related to Acaulospora. An isolate of G. mosseae colonized axenic thalli of Conocephalum, producing an association similar to that in the wild. Fungal colonization in marchantialean liverworts suppressed cell wall autofluorescence and elicited the deposition of a new wall layer that specifically bound the monoclonal antibody CCRC-M1 against fucosylated side groups associated with xyloglucan and rhamnogalacturonan I. The interfacial material covering the intracellular fungus contained the same epitopes present in host cell walls. The taxonomic distribution and cytology of liverwort GAs suggest an ancient origin and multiple more recent losses, but the occurence in widely separated liverwort taxa of fungi related to glomeromycotean lineages that form arbuscular mycorrhizas in tracheophytes, notably the Glomus Group A, is better explained by host shifting from tracheophytes to liverworts.  相似文献   

16.
Abstract

Advances on plant–fungal interactions reveal that root symbiotic fungi actively modulate host growth, resistance response and secondary metabolism. Artemisia annua has been widely recognized as an important medicinal plant for artemisinin production, yet little is known about the fungal consortium associated with roots of A. annua. In this article, microscopic and culture-dependant methods were used to evaluate the identity and taxonomic affinities of root symbiotic fungi. Morphological evidence confirmed that arbuscular mycorrhizal fungi were dominant fungal group in naturally regenerated roots, but low colonization frequency in planted roots. Dark septate endophytes (DSEs) were easily found, which were characterized with dark pigmented hypha and a sclerotium-like structure in root cortex, and other endophytic fungi also occurred. A total of 36 isolates were recovered. Combined morphological and molecular identification (based on ITS sequences) determined 21 fungal taxa (genotype), which were placed into numerous lineages of Ascomycota. The best BLAST match indicated that almost half of total taxa were closely related to undescribed fungi, some of them may act as novel DSEs but experimental data were warranted. Interestingly, remarkable difference of fungal community associated with two types of roots was examined and no culturable fungi overlapped. Our findings provide some additional evidence that DSEs and other root endophytes may be as common as mycorrhizal fungi. Recovered fungi as raw materials for bioassay of endophytes-mediated promotion of artemisinin content in A. annua will be conducted in further research.  相似文献   

17.
The identity of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis was investigated by DNA analysis and examination of the morphology of the association. The morphological features of the mycorrhizal fungus, i. e. aseptate hyphal coils, vesicles, arbuscule-like branching, and degenerate coils were similar to those previously reported for other achlorophyllous plants. Spore-like propagules identified asa glomalean fungus were propagated from root pieces of S. tosaensis in pot culture using alfalfa as the host trap plant. A PCR product was obtained from colonized root of S. tosaensis using the taxon-specific primers, VANS1 and VAGLO. Sequence analysis of the DNA fragment showed it to be almost identical to other Glomus species. Although it has been reported many times that the morphology of mycorrhizal fungi in achlorophyllous plants is quite similar to that of arbuscular mycorrhizal fungi, this is the first report of the isolation and identification of such a fungus itself.  相似文献   

18.
Knapp DG  Pintye A  Kovács GM 《PloS one》2012,7(2):e32570
Dark septate endophytic (DSE) fungi represent a frequent root-colonizing fungal group common in environments with strong abiotic stress, such as (semi)arid ecosystems. This work aimed to study the DSE fungi colonizing the plants of semiarid sandy grasslands with wood steppe patches on the Great Hungarian Plain. As we may assume that fungi colonizing both invasive and native species are generalists, root associated fungi (RAF) were isolated from eight native and three invasive plant species. The nrDNA sequences of the isolates were used for identification. To confirm that the fungi were endophytes an artificial inoculation system was used to test the isolates: we considered a fungus as DSE if it colonized the roots without causing a negative effect on the plant and formed microsclerotia in the roots. According to the analyses of the ITS sequence of nrDNA the 296 isolates clustered into 41 groups. We found that 14 of these 41 groups were DSE, representing approximately 60% of the isolates. The main DSE groups were generalist and showed no specificity to area or season and colonized both native and invasive species, demonstrating that exotic plants are capable of using the root endophytic fungi of the invaded areas. The DSE community of the region shows high similarity to those found in arid grasslands of North America. Taking into account a previous hypothesis about the common root colonizers of those grasslands and our results reported here, we hypothesize that plants of (semi)arid grasslands share common dominant members of the DSE fungal community on a global scale.  相似文献   

19.
蓝莓Vaccinium uliginosum是欧石南菌根(ericoid mycorrhiza,ERM)真菌典型的寄主植物,但同时也可与丛枝菌根(arbuscular mycorrhiza,AM)真菌和深色有隔内生真菌(dark septate endophytes,DSE)共生形成复合共生体。本研究旨在调查和评价不同栽培体制下蓝莓成年树花果期根系共生体发育状况及其根区土壤中AM真菌资源分布状况,以期为优质蓝莓栽培管理提供理论依据和技术基础。从青岛佳沃蓝莓基地采集暖棚、冷棚和露地3种方式栽培的9-10年生‘蓝丰’、‘奥尼尔’和‘公爵’蓝莓的根系及根区土样,观察测定根系共生体着生数量、根区土壤中AM真菌孢子数量和菌种组成。结果表明,所有栽培方式下供试品种蓝莓根系均形成ERM、AM和DSE结构及其复合共生体;其中,AM着生数量最多,其次是ERM,DSE侵染率最低;复合共生体中则呈现ERM+AM>ERM+DSE>ERM+AM+DSE;蓝莓复合共生体着生数量、AM真菌侵染率、丛枝着生率及孢子数量等不同种植方式下呈现暖棚>冷棚>露地,不同品种呈现‘蓝丰’>‘公爵’>‘奥尼尔’,而ERM和DSE侵染率也呈现上述变化趋势。依据AM真菌形态特征,供分离鉴定获得5属11种AM真菌,以暖棚栽培条件下分离获得的AM真菌数量最多,‘蓝丰’根区土壤中分布的AM真菌属种最多。暖棚内成年树花果期蓝莓根系共生体发育健全,AM真菌种类和孢子数量较多,可能有利于提高蓝莓的产量、改善果实品质和抗逆性。  相似文献   

20.
Ferns represent the basal group of vascular plants and are known to have fungal interactions with arbuscular mycorrhizal fungi, but diversity of endophytic fungi from ferns is rarely studied. Moreover, fungal diversity associated with ferns is likely underestimated as most studies have been performed based on a microscopic or culture-dependent approach. In this study, we investigated the endophytic fungal diversity within roots and sporophore of an endangered Korean fern (Mankyua chejuense), and compared it to fungi in surrounding soil using a metabarcoding approach. A high diversity of endophytic fungi (236 OTUs), mostly belonging to Ascomycota, was detected and fungal richness and composition were significantly different between habitats. Indicator species analysis showed that endophytic fungi have similar ecological characteristics to fungal species found from other land plants. Our results suggest that various fungal species are associated with ferns, thus understanding fern-associated fungal diversity can have a great implication for fern biology and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号