首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starling-Landis concepts of formation of interstitial fluids are in agreement with measurements of calf volume in normal young women, in horizontal recumbency or after horizontal immersion. The volume of the calf is reduced when the hydrostatic pressure of the blood column is diminished under the phlebostatic level and when the external pressure is increased by the hydrostatic pressure of the water bath.  相似文献   

2.
Triploid rainbow trout were produced by hydrostatic pressure applied to eggs 40 min after fertilization. Treatment for 10 min with or without exposure to 2% ether produced high hatching rates. Nuclear measurements from serial section of 40-day-old fry and from blood smears of 5-month-old juveniles showed that the proportion of triploid individuals was 80–90%. Ether treatment alone did not induce triploidy. Attempts to produce tetraploids by hydrostatic pressure treatment of eggs at 8 h after fertilization failed. Parallel results were also obtained with heat shock.  相似文献   

3.
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.  相似文献   

4.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continuously infused directly into the kidney interstitium to mimic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occurred when 10(-5) M PGE2 was infused. Renal blood flow increased from 4.70 +/- 0.91 to 5.45 +/- 0.35 ml/min (p less than 0.05) while renal interstitial hydrostatic pressure decreased from 3.9 +/- 0.4 to 2.6 +/- 0.5 mmHg (p less than 0.05) and fractional excretion of sodium decreased from 1.02 +/- 0.20 to 0.61 +/- 0.12% (p less than 0.05). Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

5.
Leg intravenous pressure during head-up tilt   总被引:1,自引:0,他引:1  
Leg vascular resistance is calculated as the arterial-venous pressure gradient divided by blood flow. During orthostatic challenges it is assumed that the hydrostatic pressure contributes equally to leg arterial, as well as to leg venous pressure. Because of venous valves, one may question whether, during orthostatic challenges, a continuous hydrostatic column is formed and if leg venous pressure is equal to the hydrostatic pressure. The purpose of this study was, therefore, to measure intravenous pressure in the great saphenous vein of 12 healthy individuals during 30 degrees and 70 degrees head-up tilt and compare this with the calculated hydrostatic pressure. The height difference between the heart and the right medial malleolus level represented the hydrostatic column. The results demonstrate that there were no differences between the measured intravenous pressure and the calculated hydrostatic pressure during 30 degrees (47.2 +/- 1.0 and 46.9 +/- 1.5 mmHg, respectively) and 70 degrees head-up tilt (83.9 +/- 0.9 and 85.1 +/- 1.2 mmHg, respectively). Steady-state levels of intravenous pressure were reached after 95 +/- 12 s during 30 degrees and 161 +/- 15 s during 70 degrees head-up tilt. In conclusion, the measured leg venous pressure is similar to the calculated hydrostatic pressure during orthostatic challenges. Therefore, the assumption that hydrostatic pressure contributes equally to leg arterial as well as to leg venous pressure during orthostatic challenges can be made.  相似文献   

6.
To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P < 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied beta-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.  相似文献   

7.
Biorheological views of endothelial cell responses to mechanical stimuli   总被引:2,自引:0,他引:2  
Sato M  Ohashi T 《Biorheology》2005,42(6):421-441
Vascular endothelial cells are located at the innermost layer of the blood vessel wall and are always exposed to three different mechanical forces: shear stress due to blood flow, hydrostatic pressure due to blood pressure and cyclic stretch due to vessel deformation. It is well known that endothelial cells respond to these mechanical forces and change their shapes, cytoskeletal structures and functions. In this review, we would like to mainly focus on the effects of shear stress and hydrostatic pressure on endothelial cell morphology. After applying fluid shear stress, cultured endothelial cells show marked elongation and orientation in the flow direction. In addition, thick stress fibers of actin filaments appear and align along the cell long axis. Thus, endothelial cell morphology is closely related to the cytoskeletal structure. Further, the dynamic course of the morphological changes is shown and the related events such as changes in mechanical stiffness and functions are also summarized. When endothelial cells were exposed to hydrostatic pressure, they exhibited a marked elongation and orientation in a random direction, together with development of centrally located, thick stress fibers. Pressured endothelial cells also exhibited a multilayered structure with less expression of VE-cadherin unlike under control conditions. Simultaneous loading of hydrostatic pressure and shear stress inhibited endothelial cell multilayering and induced elongation and orientation of endothelial cells with well-developed VE-cadherin in a monolayer, which suggests that for a better understanding of vascular endothelial cell responses one has to take into consideration the combination of the different mechanical forces such as exist under in vivo mechanical conditions.  相似文献   

8.
Marine mammals are known to dive up to 2000 m and, therefore, tolerate as much as 200 atm. of hydrostatic pressure. To examine possible metabolic adaptations to these elevated pressures, fresh blood samples from marine and terrestrial mammals were incubated for 2 h at 37 degrees C under 136 atm (2000 psi) of hydrostatic pressure. The consumption of plasma glucose and the production of lactate over the 2-h period were used to assess glycolytic flux in the red cells. The results indicate that glycolytic flux as measured by lactate production under pressure can be significantly depressed in most terrestrial mammals and either not altered or accelerated in marine mammals. The data also suggest that there is a significant shift in the ratio of lactate produced to glucose consumed under pressure. Interestingly, human and dolphin blood do not react to pressure. These combined data imply a metabolic adaptation to pressure in marine mammal RBC that may not be necessary in human or dolphin cells due to their unique patterns of glucose metabolism.  相似文献   

9.
To examine a hypothesis that change in regional blood flow due to decreased hydrostatic pressure gradient and redistribution of blood during reduced gravity (rG) is different between organs, changes in cerebrocortical blood flow (CBF) and blood flow in the temporal muscle (MBF) with exposure to rG were measured in anesthetized rats in head-up tilt and flat positions during parabolic flight. Carotid arterial pressure (CAP), jugular venous pressure (JVP), and abdominal aortic pressure were also measured simultaneously. In the head-up tilt group, CBF increased by 15 +/- 3% within 3 s of entry into rG and rapidly recovered during rG. MBF also increased, but the change was significantly greater than that of CBF. JVP increased by 1.8 +/- 0.5 mmHg, probably due to loss of hydrostatic pressure gradient, since the measuring point of JVP was 2-3 cm above the hydrostatic indifference point. CAP and abdominal aortic pressure increased by 16.7 +/- 2 and 7.7 +/- 2 mmHg, respectively, compared with the 1-G condition. Muscle vascular resistance [(CAP-JVP)/MBF] decreased on entry into rG, but no significant change was observed in cerebrocortical vascular resistance [(CAP-JVP)/CBF]. In the flat group, no significant change was observed in all the variables. The results indicate that arteriolar vasodilatation occurs in the temporal muscle but not in the cerebral cortex. Thus the blood flow control mechanism at the onset of rG is different between intra- and extracranial organs.  相似文献   

10.
The elongate body form of snakes and the wide diversity of habitatsinto which they have radiated have affected the form and functionof the cardiovascular system. Heart position is strongly correlatedwith habitat. The heart is located 15–25% of the bodylength from the head in terrestrial and arboreal species, but25–45% in totally aquatic species. Semi-aquatic and fossorialspecies are intermediate. The viperids are exceptional, withgenerally more posterior hearts but arboreal species have heartscloser to the head. An anterior heartis favored when snakesclimb because it reduces the hydrostatic pressure of the bloodcolumn above the heart and tends to stabilize cephalic bloodpressure. In water, where hydrostatic bloodpressure is not aproblem, a more centrally located heart is favored because theheart does less work perfusing the body. In terrestrial species,head-heart distance increases linearly with body length andthe increased hydrostatic pressure is matched by higher restingarterial blood pressure in longer animals. Unlike mammals andbirds, snakes have blood pressures that increasewith body mass.The added stress on the ventricle wall in larger snakes is correlatedwith ventricles that are larger than predicted by other reptiles.Heart mass scales with body mass to the 0.95 power in snakesbut only 0.77–0.91 in other reptiles that are not as subjectto the hydrostatic effects of gravity. The spongy hearts ofreptiles do not conform well to the Principle of Laplace.  相似文献   

11.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continously infused directly into the kidney interstitium to minic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occured when 10−5 M PGE2 was infused. Renal blood flow increased from 4.70±0.91 to 5.45±0.35 ml/min (p<0.05) while renal interstitial hydrostatic pressure decreased from 3.9±0.4 to 2.6±0.5 mmHg (p<0.05) and fractional excretion of sodium decreased from 1.02±0.20 to 0.61±0.12% (p<0.05. Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

12.
Summary Endothelial cells (ECs) may behave as hemodynamic sensors, translating mechanical information from the blood flow into biochemical signals, which may then be transmitted to underlying smooth muscle cells. The extracellular matrix (ECM), which provides adherence and integrity for the endothelium, may serve an important signaling function in vascular diseases such as atherogenesis, which has been shown to be promoted by low and oscillating shear stresses. In this study, confluent bovine aortic ECs (BAECs) were exposed to an oscillatory shear stress or to a hydrostatic pressure of 40 mmHg for time periods of 12 to 48 h. Parallel control cultures were maintained in static condition. Although ECs exposed to hydrostatic pressure or to oscillatory flow had a polygonal morphology similar to that of control cultures, these cells possessed more numerous central stress fibers and exhibited a partial loss of peripheral bands of actin, in comparison to static cells. In EC cultures exposed to oscillatory flow or hydrostatic pressure, extracellular fibronectin (Fn) fibrils were more numerous than in static cultures. Concomitantly, a dramatic clustering ofα 5β1 Fn receptors and of the focal contact-associated proteins vinculin and talin occurred. Laminin (Ln) and collagen type IV formed a network of thin fibrils in static cultures, which condensed into thicker fibers when BAECs were exposed to oscillatory shear stress or hydrostatic pressure. The ECM-associated levels of Fn and Ln were found to be from 1.5-to 5-fold greater in cultures exposed to oscillatory shear stress or pressure for 12 and 48 h, than in static cultures. The changes in the organization and composition of ECM and focal contacts reported here suggest that ECs exposed to oscillatory shear stress or hydrostatic pressure may have different functional characteristics from cells in static culture, even though ECs in either environment exhibit a similar morphology.  相似文献   

13.
It is well known that heart rate, oxygen uptake and body temperature during exercise in water are affected by water temperature, buoyancy, hydrostatic and so on. It has been reported that the central blood volume during immersion was affected by the increased external hydrostatic pressure and cold-induced peripheral vasoconstriction, and intrathoratic blood volume should be greater during cold than warm water immersion (Epstein, 1992). The purpose of this presentation study was to make clear heart rate, blood pressure, oxygen uptake and cardiac autonomic nervous system modulation during supine floating at water temperatures of 25, 35 and 41 degrees C.  相似文献   

14.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.  相似文献   

15.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30°C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30°C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30°C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30°C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.  相似文献   

16.
Hydrostatic pressure is a distinctive feature of deep-sea environments, and this thermodynamic parameter has potentially inhibitory effects on organisms adapted to living at atmospheric pressure. In the yeast Saccharomyces cerevisiae, hydrostatic pressure causes a delay in or cessation of growth. The vacuole is a large acidic organelle involved in degradation of cellular proteins or storage of ions and various metabolites. Vacuolar pH, as determined using the pH-sensitive fluorescent dye 6-carboxyfluorescein, was analyzed in a hydrostatic chamber with transparent windows under elevated hydrostatic pressure conditions. A pressure of 40–60 MPa transiently reduced the vacuolar pH by approximately 0.33. A vma3 mutant defective in vacuolar acidification showed no reduction of vacuolar pH after application of hydrostatic pressure, indicating that the transient acidification is mediated through the function of vacuolar H+-ATPase. The vacuolar acidification was observed only in the presence of fermentable sugars, and never observed in the presence of ethanol, glycerol, or 3-o-methyl-glucose as the carbon source. Analysis of a glycolysis-defective mutant suggested that glycolysis or CO2 production is involved in the pressure-induced acidification. Hydration and ionization of CO2 is facilitated by elevated hydrostatic pressure because a negative volume change (ΔV < 0) accompanies the chemical reaction. Moreover the glucose-induced cytoplasmic alkalization is inhibited by elevated hydrostatic pressure, probably because of inhibition of the plasma membrane H+-ATPase. Therefore, the cytoplasm tends to become acidic under elevated hydrostatic pressure conditions, and this could be crucial for cell survival. To maintain a favorable cytoplasmic pH, the yeast vacuoles may serve as proton sequestrants under hydrostatic pressure. We are investigating the physiological effects of hydrostatic pressure in the course of research in a new experimental field, baro- (piezo-) physiology. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

17.
Physiological hydrostatic pressure protects endothelial monolayer integrity   总被引:1,自引:0,他引:1  
Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.  相似文献   

18.
We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na(+) that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ~330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens' circulation of Na(+) was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium.  相似文献   

19.
Subconfluent bovine pulmonary artery endothelial cells on rigid substrates were exposed to 1.5–15 cm H2O sustained hydrostatic pressure for up to 7 days and exhibited elongation, cytoskeletal rearrangement, increased cell proliferation, and bilayering. The role of basic fibroblast growth factor (bFGF) in the mechanism(s) of these endothelial cell responses to sustained hydrostatic pressure was investigated. Evidence that bFGF was released from endothelial cells exposed to sustained hydrostatic pressure or compression was provided by the following experimental results: (1) Cells exposed to control (3 mm H2O) pressure displayed intense nuclear and cytoplasmic bFGF staining by immunocytochemical techniques; this staining was absent in cells exposed to 10 cm H2O for 7 days. (2) Conditioned medium from endothelial cells exposed to 10 cm H2O for 7 days contained at ansferable, growth-promoting activity exhibiting heparin-Sepharose affinity, lability to both heat and freeze/thawing, and neutralization by anti-bovine bFGF. (3) Suramin (0.1 mM), a growth-factor receptor inhibitor, abrogated the proliferative and morphological responses of endothelial cells exposed to sustained hydrostatic pressure. Endothelial cells exposed to elevated hydrostatic pressure demonstrated no detectable decrement in cell viability as assessed by Trypan blue exclusion. The results of the present study indicate that hydrostatic pressure or compression can induce bFGF release from endothelial cells independent of cell injury or death; bFGF is subsequently responsible for the morphological, proliferative, and bilayering responses of endothelial cells to hydrostatic pressure. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Chondrocytes of the articular cartilage sense mechanical factors associated with joint loading, such as hydrostatic pressure, and maintain the homeostasis of the extracellular matrix by regulating the metabolism of proteoglycans (PGs) and collagens. Intermittent hydrostatic pressure stimulates, while continuous high hydrostatic pressure inhibits, the biosynthesis of PGs. High continuous hydrostatic pressure also changes the structure of cytoskeleton and Golgi complex in cultured chondrocytes. Using microtubule (MT)-affecting drugs nocodazole and taxol as tools we examined whether MTs are involved in the regulation of PG synthesis in pressurized primary chondrocyte monolayer cultures. Disruption of the microtubular array by nocodazole inhibited [(35)S]sulfate incorporation by 39-48%, while MT stabilization by taxol caused maximally a 17% inhibition. Continuous hydrostatic pressure further decreased the synthesis by 34-42% in nocodazole-treated cultures. This suggests that high pressure exerts its inhibitory effect through mechanisms independent of MTs. On the other hand, nocodazole and taxol both prevented the stimulation of PG synthesis by cyclic 0. 5 Hz, 5 MPa hydrostatic pressure. The drugs did not affect the structural and functional properties of the PGs, and none of the treatments significantly affected cell viability, as indicated by the high level of PG synthesis 24-48 h after the release of drugs and/or high hydrostatic pressure. Our data on two-dimensional chondrocyte cultures indicate that inhibition of PG synthesis by continuous high hydrostatic pressure does not interfere with the MT-dependent vesicle traffic, while the stimulation of synthesis by cyclic pressure does not occur if the dynamic nature of MTs is disturbed by nocodazole. Similar phenomena may operate in cartilage matrix embedded chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号