首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adaptation of dynamicmovement-posture coordination during forward trunk bending wasinvestigated in long-term weightlessness. Three-dimensionalmovement analysis was carried out in two astronauts during a 4-momicrogravity exposure. The principal component analysis was applied tojoint-angle kinematics for the assessment of angular synergies. Theanteroposterior center of mass (CM) displacement accompanying trunkflexion was also quantified. The results reveal that subjects kepttypically terrestrial strategies of movement-posture coordination. Thetemporary disruption of joint-angular synergies observed at subjects'first in-flight session was promptly recovered when repetitive sessionsin flight were analyzed. The CM anteroposterior shift was consistently<3-4 cm, suggesting that subjects could dynamically control theCM position throughout the whole flight. This is in contrast to theobserved profound microgravity-induced disruption of the quasi-staticbody orientation and initial CM positioning. Although this study wasbased on only two subjects, evidence is provided that static anddynamic postural control might be under two separate mechanisms,adapting with their specific time course to the constraints of microgravity.

  相似文献   

2.
昆虫定向机制研究进展   总被引:1,自引:1,他引:1  
高月波  翟保平 《昆虫知识》2010,47(6):1055-1065
许多昆虫具有定向运动的行为。对部分社会性昆虫和迁飞性昆虫定向行为的大量研究已经初步阐明太阳、地磁场、天体、风及地面标志物等都可能成为昆虫返巢和迁飞定向的线索。社会性昆虫具有对不同定向线索进行整合而实现精确导航的能力。日间迁飞性昆虫利用时间补偿太阳罗盘进行定向的机制亦已明确,但夜间迁飞昆虫的定向机制尚需深入研究。迁飞性害虫定向机制的明确将有助于判断害虫迁飞路径及降落区域,为迁飞害虫的准确预测提供科学依据。本文对昆虫的定向机制研究进展进行了综述。  相似文献   

3.
Flies display a sophisticated suite of aerial behaviours that require rapid sensory-motor processing. Like all insects, flight control in flies is mediated in part by motion-sensitive visual interneurons that project to steering motor circuitry within the thorax. Flies, however, possess a unique flight control equilibrium sense that is encoded by mechanoreceptors at the base of the halteres, small dumb-bell-shaped organs derived through evolutionary transformation of the hind wings. To study the input of the haltere system onto the flight control system, I constructed a mechanically oscillating flight arena consisting of a cylindrical array of light-emitting diodes that generated the moving image of a 30 degrees vertical stripe. The arena provided closed-loop visual feedback to elicit fixation behaviour, an orientation response in which flies maintain the position of the stripe in the front portion of their visual field by actively adjusting their wing kinematics. While flies orientate towards the stripe, the entire arena was swung back and forth while an optoelectronic device recorded the compensatory changes in wing stroke amplitude and frequency. In order to reduce the background changes in stroke kinematics resulting from the animal's closed-loop visual fixation behaviour, the responses to eight identical mechanical rotations were averaged in each trial. The results indicate that flies possess a robust equilibrium reflex in which angular rotations of the body elicit compensatory changes in both the amplitude and stroke frequency of the wings. The results of uni- and bilateral ablation experiments demonstrate that the halteres are required for these stability reflexes. The results also confirm that halteres encode angular velocity of the body by detecting the Coriolis forces that result from the linear motion of the haltere within the rotating frame of reference of the fly's thorax. By rotating the flight arena at different orientations, it was possible to construct a complete directional tuning map of the haltere-mediated reflexes. The directional tuning of the reflex is quite linear such that the kinematic responses vary as simple trigonometric functions of stimulus orientation. The reflexes function primarily to stabilize pitch and yaw within the horizontal plane.  相似文献   

4.
Based on previous studies of odor-modulated flight where track parameter data was lumped and averaged, the speed and orientation of the moths' movement along their flight tracks have been said to be controlled to maintain certain “preferred” values. The results from our fine-scaled analysis of this behavior show that none of the track parameters typically measured are held constant. The moths' speed along the flight track is modulated substantially and predictably: fastest along the straight legs and slowest around the turns. In addition, about half of the individuals studied progressively reduced the peak speed along the straight legs as they approached the pheromone source. While most of the track legs between the turns were directed upwind, their orientations were widely distributed, indicating no preferred direction. Small fluctuations of orientation along some straight legs suggest corrective maneuvers to stabilize flight direction about an internal set point. The visual inputs hypothesized to control steering and speed, transverse and longitudinal image flow, changed continuously during upwind flight in pheromone, but no regular relationship between them was observed. We found that the orientation of the longitudinal body axis and the direction of thrust (course angle) were only rarely coincident during upwind flight to the odor source, suggesting that moths receive sensory input which differs quantitatively from that calculated by conventional methods. Our results strongly suggest that the long-accepted hypothetical mechanisms of control for this behavior do not operate in the manner in which they have been proposed. Accepted: 11 July 1997  相似文献   

5.
Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.  相似文献   

6.
Intercepting a moving object requires accurate spatio-temporal control. Several studies have investigated how the CNS copes with such a challenging task, focusing on the nature of the information used to extract target motion parameters and on the identification of general control strategies. In the present study we provide evidence that the right time and place of the collision is not univocally specified by the CNS for a given target motion; instead, different but equally successful solutions can be adopted by different subjects when task constraints are loose. We characterized arm kinematics of fourteen subjects and performed a detailed analysis on a subset of six subjects who showed comparable success rates when asked to catch a flying ball in three dimensional space. Balls were projected by an actuated launching apparatus in order to obtain different arrival flight time and height conditions. Inter-individual variability was observed in several kinematic parameters, such as wrist trajectory, wrist velocity profile, timing and spatial distribution of the impact point, upper limb posture, trunk motion, and submovement decomposition. Individual idiosyncratic behaviors were consistent across different ball flight time conditions and across two experimental sessions carried out at one year distance. These results highlight the importance of a systematic characterization of individual factors in the study of interceptive tasks.  相似文献   

7.
These experiments are concerned with the ability of human subjects to match isometric torque in their elbow flexor muscles when biceps of one arm is made sore. Pain was induced by injection of hypertonic saline. Subjects were asked to generate a level of torque, 30% of maximum, with one arm, the reference arm. To achieve the required torque, subjects were given visual feedback. Subjects were then asked to match this torque with their other arm, the indicator arm. In control measurements, subjects were consistent in their matching ability and often were quite accurate. However, when biceps of one arm was made sore, subjects consistently and significantly underestimated the level of torque being generated by the sore arm. Painful heat applied to the skin over biceps produced a similar pattern of errors. Heating skin remote from elbow flexors had no significant effect. One interpretation of these findings is that the nociceptive input from the sore region of skin or muscle leads to reduced excitability of the motor cortex. That, in turn, disturbs the relationship between the centrally generated effort and motor output, leading to matching errors.  相似文献   

8.
The ability of humans to discriminate systolic blood pressure (BP) was investigated in two experiments. In Experiment 1, 14 normal subjects were asked to make estimates of their systolic BP while performing both BP-elevating and BP-lowering tasks. They were given intermittent feedback throughout all 10 45-min sessions. Results indicated significant correlations and small absolute differences between estimated and measured BP for all subjects in almost all sessions. Experiment 2, undertaken 6 months after Experiment 1, assessed whether estimation accuracy by subjects who had available both external and interoceptive cues surpassed that of subjects which access to external cues only. Three subjects from the original group who showed consistently high motivation, and who improved in accuracy across the 10 sessions in the previous experiment, made estimates of BP while performing novel tasks with no feedback. Correlations between estimated and measured BP remained high for 2 of the 3. These results were compared with the accuracy of control subjects (3 for each experimental subject) who were asked to estimate experimental subjects' BP using only the cognitive information available to the experimental subjects. Control subjects also had high correlations between their estimates and the experimental subjects' measured BP but at lower levels than two experimental subjects. These findings are discussed in relation to subjects' possible use of interoceptive information.  相似文献   

9.
在自然的视觉中,投射到视网膜上的视觉图像总是在不停地变化,而人类的感知系统依然可以准确高效地识别物体.因此,人类的感知系统有相应的快速处理机制以应对这种动态变化.然而,前人的实验都是在相对稳定的刺激条件下研究人类被试的感知系统对一个刺激参数的反应,比如在固定对比度下测试朝向分辨能力,或在固定朝向测定对比度分辨能力,而朝向和对比度同时变化时,人类对这两个参数的分辨能力仍然缺乏研究.因此,在本实验中,我们使用朝向和对比度同时变化的刺激,研究了人类被试对朝向和对比度的分辨能力.结果表明,在这种动态变化的条件下,被试对朝向和对比度的分辨阈值都有显著性的降低.而且,朝向分辨阈值降低的幅度与在固定对比度参数条件下的分辨阈值成负相关,即在固定对比度条件下朝向分辨阈值较高的被试,在朝向和对比度同时变化条件下,其朝向分辨阈值降低的幅度相对要大,朝向分辨能力也就相对地提高更大.对比度分辨能力也呈现同样的规律.这些结果说明,朝向和对比度的同时变化提高了被试对朝向和对比度的分辨能力,一个参数变化时其分辨能力越低的被试,两个参数变化时其分辨能力提高的幅度就越大.揭示了视觉系统处理这种多刺激参量信息变化的能力和机制,对人类视觉系统在真实的视觉过程中如何处理朝向和对比度信息提供了认识.  相似文献   

10.
The few orientation studies that have been carried out with day-migrating birds show that they are able to use solar and magnetic orientation cues for orientation. Previous orientation experiments in Emlen funnels have been carried out either with hand-raised birds or with birds caught during resting periods at stop-over sites. The aim of our study was to test whether birds caught during active flight show a higher concentration of migratory activity in the seasonally appropriate migratory direction in the funnels than birds that had not experienced migration just before the funnel experiments. The topography at the alpine pass Col de Bretolet at the border of Switzerland and France allowed us to capture birds during active migratory flight. These birds were in full migration disposition. Orientation experiments with chaffinches suggested an influence of the sun because chaffinches did not orient in the seasonally expected direction, but probably showed positive phototaxis towards the light of the sun at the opposite side of the funnel. Chaffinches tested under overcast conditions oriented to the north-west which probably was a 'nonsense' orientation and not a reverse migration or compensatory behaviour. We conclude that freshly caught birds are too stressed to show appropriate orientation when tested immediately after catching.  相似文献   

11.
The first solitary migration of juvenile birds is difficult to study because of a low juvenile survival rates and sometimes long delays in return to the breeding grounds. Consequently, little is known about this crucial life event for many bird species, in particular the sensory guidance mechanisms facilitating the first migratory journey. Initial orientation during the first migration is a key measure to investigate these mechanisms. Here, we developed an assay to measure initial orientation as flight direction upon first take‐off in nocturnally fledging juvenile seabirds. We dorsally deployed a coloured LED on juvenile birds to allow researchers to observe the vanishing bearings of individuals as they flew out to sea. Additionally, we co‐deployed either a small Neodymium magnet or glass bead (control) on top of the bird's head to investigate the use of magnetoreception, previously unexplored in this early life stage. We used this assay to observe the first flight of Manx shearwaters Puffinus puffinus and found that they did not orient towards their wintering ground straight after taking off. Further, we did not find an effect of the magnetic treatment on juveniles' flight direction, though whether this is due to the birds not using magnetoreception, other salient cues being available or a lack of motivation to orient to the migratory beeline is unclear. We were, however, able to identify wind direction and topography as drivers of first flight direction in Manx shearwaters, which fledged with wind component between a crosswind and a tailwind and directed their maiden flight towards the sea and away from the land. This novel assay will facilitate the study of the maiden flight of nocturnally fledging birds and will help advance the study of sensory guidance mechanisms underpinning migratory orientation in a wide range of taxa, including species which are traditionally challenging to study.  相似文献   

12.
Birds in flight are proposed to adjust their body orientation (heading) and airspeed to wind conditions adaptively according to time and energy constraints. Airspeeds in goal‐directed flight are predicted to approach or exceed maximum‐range airspeeds, which minimize transport costs (energy expenditure per unit distance) and should increase in headwinds and crosswinds. Diagnosis of airspeed adjustment is however obscured by uncertainty regarding birds' goal‐directions, transport costs, interrelations with orientation strategy and the attainability of predicted behaviour. To address these issues, we tested whether gulls minimized transport costs through adjustment of airspeed and heading to wind conditions during extended inbound flight over water (180–360 km) to their breeding colony, and introduce a methodology to assess transport (energy) efficiency given wind conditions. Airspeeds, heading, flight mode and energy expenditure were estimated using GPS tracking, accelerometer and wind data. Predicted flight was determined by simulating each trip according to maximum‐range airspeeds and various orientation strategies. Gulls employed primarily flapping flight (93%), and negotiated crosswinds flexibly to exploit both high altitude tailwinds and coastal soaring opportunities. We demonstrate that predicted airspeeds in heavy crosswinds depend strongly on orientation strategy and presumed preferred direction. Measured airspeeds increased with headwind and crosswind similarly to maximum‐range airspeeds based on full compensation for wind drift, yet remained ~ 30% lower than predicted by all strategies, resulting in slower and 30–35% costlier flight. Interestingly, more energy could be saved through adjustment of airspeed (median 40%) than via orientation strategy (median 4%). Therefore, despite remarkably flexible reaction to wind at sea, these gulls evidently minimized neither time nor energy expenditure. However, airspeeds were possibly over‐predicted by current aerodynamic models. This study emphasizes the importance of accounting for orientation strategy when assessing airspeed adjustments to wind and indicates that either the cost or adaptive ‘currency’ of extended flight among gulls may require revision.  相似文献   

13.
Bats have a well-developed spatial memory, which enables them to navigate even when the conditions are extremely unfavourable for orientation. However, if they were to adhere too strictly to a flight path planned from memory and independent of exteroceptive control, they would be in danger of colliding with unexpected obstacles. In the experiments described here, Phyllostomus discolor that had familiarized themselves with an octagonal flight arena developed a clear preference for certain resting sites and were able to fly to these sites without recourse to external orientational cues. Proximal and distal cues were ruled out separately, by rotating the direction in which the bats started out within the arena or by rotating the entire arena in the room. Furthermore, by marking the preferred site with a visible identifier it was shown that even when additional aids to orientation are available, the bats do not make use of them. On the other hand, all the bats tested responded immediately to a reduction of the landing area, demonstrating that they are capable of incorporating exteroceptive information into the orientation process in certain circumstances.  相似文献   

14.
Wang Q  Gu H  Dorn S 《Heredity》2003,91(4):430-435
Parasitic wasps (parasitoids) use volatiles from the plants infested by phytophagous insects to locate host herbivores, but their behavioural response to such semiochemicals is highly variable. Bi-directional selection on Cotesia glomerata (Hymenoptera: Braconidae) was conducted to investigate the importance of genetic variation in the olfactory response of parasitoids. Female wasps were assessed for flight orientation and landing success in response to the hexane extract from a plant-host complex in a wind tunnel. After the first generation of selection, two strains significantly differentiated in both flight orientation and landing success, and their divergence continued with further selection. The two selected strains genetically differentiated in olfactory perception rather than upwind flight ability. The realized heritability was estimated as 0.248 for flight orientation and 0.216 for landing success. The selection experiment further demonstrated that a prior exposure to the semiochemicals significantly enhanced the subsequent response of female wasps, independent of genetic differences. These results suggest that both genetic component and environmental conditioning have played an important role in the evolution of host selection and utilization by the parasitoid in a tritrophic system.  相似文献   

15.
In two experiments, human subjects were asked to estimate their present values of single delayed rewards and their present values of temporal sequences of three rewards. Present values were solicited by asking subjects to indicate an amount of money v for which they would be indifferent between receiving v at the end of the session and receiving the delayed reward(s). A procedure was used for which responding the true value of v was the optimal strategy, and the actual payoff that each subject received was determined by one randomly selected trial. In Experiment 1 (n=29) each delayed reward was 9.90 dollars in cash. In Experiment 2 (n=19) the delayed rewards were dated 15 dollars gift certificates to a local restaurant. In both experiments, the present values of the sequences were approximately equal to the sums of the present values of their component rewards. The presence of outliers suggests that a few subjects may have valued sequences less than the sums of their single rewards. Effects of a preference for uniform sequences, if any, were too small to be detected. Discounting of sequences was well fit by a parallel hyperbolic discounting equation, consistent with Mazur's [Mazur, J.E., 1986. Choice between single and multiple delayed reinforcers. J. Exp. Anal. Behav. 46 (1), 67-77] results using multiple reinforcers.  相似文献   

16.
Humans can distinguish between contours of similar orientation, and between directions of visual motion. There is consensus that both of these capabilities depend on selective activation of tuned neural channels. The bandwidths of these tuned channels are estimated here by modelling previously published empirical data. Human subjects were presented with a rapid stream of randomly oriented gratings, or randomly directed motions, and asked to respond when they saw a target stimulus. For the orientation task, subjects were less likely to respond when two preceding orientations were close to the target orientation but differed from each other, presumably due to a failure of summation. For the motion data, by contrast, subjects were more likely to respond when the vector sum of two previous directions was in the target direction. Fitting a cortical signal-processing model to these data showed that the direction bandwidth of motion sensors is about three times the bandwidth of orientation sensors, and that it is the large bandwidth that allows the summation of motion stimuli. The differing bandwidths of orientation and motion sensors presumably equip them for differing tasks, such as orientation discrimination and estimation of heading, respectively.  相似文献   

17.
Wind and light are major climatic factors which affect host-location process in parasitoids, but these environmental effects have not been studied thoroughly. Wind-tunnel experiments were designed to dissect how changes in wind velocity and light intensity influence flight initiation, flight orientation and host-searching efficiency in Cotesia glomerata . This study uncovers the influences of changes in wind velocity and light intensity on different phases of host-location process in the parasitoid. These results suggest that a cloudy and/or windy weather may reduce the success of host location by C. glomerata because such conditions suppress flight initiation, cause failure to orientate flights to the herbivore-infested plant and hamper host-searching activity on the plant.  相似文献   

18.
We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the “remnant” body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli.  相似文献   

19.
Many insects use the polarization pattern of the sky for obtaining compass information during orientation or navigation. E-vector information is collected by a specialized area in the dorsal-most part of the compound eye, the dorsal rim area (DRA). We tested honeybees' capability of learning certain e-vector orientations by using a classical conditioning paradigm with the proboscis extension reflex. When one e-vector orientation (CS+) was associated with sugar water, while another orientation (CS-) was not rewarded, the honeybees could discriminate CS+ from CS-. Bees whose DRA was inactivated by painting did not learn CS+. When ultraviolet (UV) polarized light (350 nm) was used for CS, the bees discriminated CS+ from CS-, but no discrimination was observed in blue (442 nm) or green light (546 nm). Our data indicate that honeybees can learn and discriminate between different e-vector orientations, sensed by the UV receptors of the DRA, suggesting that bees can determine their flight direction from polarized UV skylight during foraging. Fixing the bees' heads during the experiments did not prevent learning, indicating that they use an 'instantaneous' algorithm of e-vector detection; that is, the bees do not need to actively scan the sky with their DRAs ('sequential' method) to determine e-vector orientation.  相似文献   

20.
Body miniaturization in insects is predicted to result in decreased flight speed and therefore limited ability of these insects to fly upwind. Therefore, tiny insects are often regarded as relying on passive dispersal by winds. We tested this assumption in a wind tunnel by measuring the burst speed of Eretmocerus mundus (Mercet), a beneficial parasitoid wasp with body length <1 mm. Insects were filmed flying upwind towards a UV light source in a range of wind speed 0–0.5 m/s. The Insects flew towards the UV light in the absence and presence of wind but increased their flight speed in the presence of wind. They also changed flight direction to be directly upwind and maintained this body orientation even while drifted backwards relative to the ground by stronger winds. Field measurements showed that the average flight speed observed in the wind tunnel (0.3 m/s) is sufficient to allow flying between plants even when the wind speed above the vegetation was 3–5 folds higher. A simulation of the ability of the insects to control their flight trajectory towards a visual target (sticky traps) in winds show that the insects can manipulate their progress relative to the ground even when the wind speed exceeds their flight speed. The main factors determining the ability of the insects to reach the trap were trap diameter and the difference between insect flight speed and wind speed. The simulation also predicts the direction of arrival to the sticky target showing that many of the insects reach the target from the leeward side (i.e. by flight upwind). In light of these results, the notion that miniature insects passively disperse by winds is misleading because it disregards the ability of the insects to control their drift relative to the ground in winds that are faster than their flight speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号