首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Both the Grp170 and Hsp110 families represent relatively conserved and distinct sets of stress proteins, within a more diverse category that also includes the Hsp70s. All of these families are found in a wide variety of organisms from yeasts to humans. Although Hsp110s or Grp170s are not Hsp70s any more than Hsp70s are Hsp110s or Grp170s, it is still reasonable to refer to this combination of related families as the Hsp70 superfamily based on arguments discussed above and since no obvious prokaryotic Hsp110 or Grp170 has yet been identified. These proteins are related to their counterparts in the Hsp70/Grp78 family of eukaryotic stress proteins but are characterized by significantly larger molecular weights. The members of the Grp170 family are characterized by C-terminal ER retention sequences and are ER localized in yeasts and mammals. As a Grp, Grp170 is recognized to be coregulated with other major Grps by a well-known set of stress conditions, sometimes referred to as the unfolded protein response (Kozutsumi et al 1988; Nakaki et al 1989). The Hsp110 family members are localized in the nucleus and cytoplasm and, with other major Hsps, are also coregulated by a specific set of stress conditions, most notably including hyperthermic exposures. Hsp110 is sometimes called Hsp105, although it would be preferable to have a uniform term. The large Hsp70-like proteins are structurally similar to the Hsp70s but differ from them in important ways. In both the Grp170 and Hspl10 families, there is a long loop structure that is interposed between the peptide-binding ,-domain and the alpha-helical lid. In the Hsp110 family and Grp170, there are differing degrees of expansion in the alpha-helical domain and the addition of a C-terminal loop. This gives the appearance of much larger lid domains for Hsp110 and Grp170 compared with Hsp70. Both Hsp110 and Grp170 families have relatively conserved short sequences in the alpha-helical domain in the lid, which are conserved motifs in numerous proteins (we termed these motifs Magic and TedWylee as discussed earlier). The structural differences detailed in this review result in functional differences between the large (Grp170 and Hspl10) members of the Hsp70 superfamily, the most distinctive being an increased ability of these proteins to bind (hold) denatured polypeptides compared with Hsc70, perhaps related to the enlarged C-terminal helical domain. However, there is also a major difference between these large stress proteins; Hsp110 does not bind ATP in vitro, whereas Grp170 binds ATP avidly. The role of the Grp170 and Hsp110 stress proteins in cellular physiology is not well understood. Overexpression of Hsp110 in cultured mammalian cells increases thermal tolerance. Grp170 binds to secreted proteins in the ER and may be cooperatively involved in folding these proteins appropriately. These roles are similar to those of the Hsp70 family members, and, therefore, the question arises as to the differential roles played by the larger members of the superfamily. We have discussed evidence that the large members of the superfamily cooperate with members of the Hsp70 family, and these chaperones probably interact with a large number of chaperones and cochaperones in their functional activities. The fundamental point is that Hsp110 is found in conjunction with Hsp70 in the cytoplasm (and nucleus) and Grp170 is found in conjunction with78 in tha ER in every eucaryotic cell examined from yeast to humans. This would strongly argue that Hsp110 Grp170 exhibit functions in eucaryotes not effectively performed by Hsp70s or Grp78, respectively. Of interest in this respect is the observation that all Hsp110s loss of function or deletion mutants listed in the Drosophila deletion project database are lethal. The important task for the future is to determine the roles these conserved molecular chaperones play in normal and physiologically stressed cells.  相似文献   

2.
Heat shock proteins play a major role in the process of protein folding, and they have been termed molecular chaperones. Two members of the Hsp70 family, Hsc70 and Hsp70, have a high degree of sequence homology. But they differ in their expression pattern. Hsc70 is constitutively expressed, whereas Hsp70 is stress inducible. These 2 proteins are localized in the cytosol and the nucleus. In addition, they have also been observed in close proximity to cellular membranes. We have recently reported that Hsc70 is capable of interacting with a lipid bilayer forming ion-conductance channels. In the present study, we found that both Hsc70 and Hsp70 interact with lipids and can be differentiated by their characteristic induction of liposome aggregation. These proteins promote the aggregation of phosphatidylserine liposomes in a time- and protein concentration-dependent manner. Although both proteins are active in this process, the level and kinetics of aggregation are different between them. Calcium ions enhance Hsc70 and Hsp70 liposome aggregation, but the effect is more dramatic for Hsc70 than for Hsp70. Addition of adenosine triphosphate blocks liposome aggregation induced by both proteins. Adenosine diphosphate (ADP) also blocks Hsp70-mediated liposome aggregation. Micromolar concentrations of ADP enhance Hsc70-induced liposome aggregation, whereas at millimolar concentrations the nucleotide has an inhibitory effect. These results confirm those of previous studies indicating that the Hsp70 family can interact with lipids directly. It is possible that the interaction of Hsp70s with lipids may play a role in the folding of membrane proteins and the translocation of polypeptides across membranes.  相似文献   

3.
We have identified 24 members of the DnaK subfamily of heat shock 70 proteins (Hsp70s) in the complete genomes of 5 diverse photosynthetic eukaryotes. The Hsp70s are a ubiquitous protein family that is highly conserved across all domains of life. Eukaryotic Hsp70s are found in a number of subcellular compartments in the cell: cytoplasm, mitochondrion (MT), chloroplast (CP), and endoplasmic reticulum (ER). Although the Hsp70s have been the subject of intense study in model organisms, very little is known of the Hsp70s from early diverging photosynthetic lineages. The sequencing of the complete genomes of Thalassiosira pseudonana (a diatom), Cyanidioschyzon merolae (a red alga), and 3 green algae (Chlamydomonas reinhardtii, Ostreococcus lucimarinus, Ostreococcus tauri) allow us to conduct comparative genomics of the Hsp70s present in these diverse photosynthetic eukaryotes. We have found that the distinct lineages of Hsp70s (MT, CP, ER, and cytoplasmic) each have different evolutionary histories. In general, evolutionary patterns of the mitochondrial and endoplasmic reticulum Hsp70s are relatively stable even among very distantly related organisms. This is not true of the chloroplast Hsp70s and we discuss the distinct evolutionary patterns between "green" and "red" plastids. Finally, we find that, in contrast to the angiosperms Arabidopsis thaliana and Oryza sativa that have numerous cytoplasmic Hsp70, the 5 algal species have only 1 cytoplasmic Hsp70 each. The evolutionary and functional implications of these differences are discussed.  相似文献   

4.
Hsp70 family members together with their Hsp40 cochaperones function as molecular chaperones, using an ATP-controlled cycle of polypeptide binding and release to mediate protein folding. Hsp40 plays a key role in the chaperone reaction by stimulating the ATPase activity and activating the substrate binding of Hsp70. We have explored the interaction between the Escherichia coli Hsp70 family member, DnaK, and its cochaperone partner DnaJ. Our data show that the binding of ATP, subsequent conformational changes in DnaK, and DnaJ-stimulated ATP hydrolysis are all required for the formation of a DnaK-DnaJ complex as monitored by Biacore analysis. In addition, our data imply that the interaction of the J-domain with DnaK depends on the substrate binding state of DnaK.  相似文献   

5.
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.  相似文献   

6.
Extracellular heat shock protein 70 (Hsp70) exerts profound effects both in mediating tumor rejection by Hsp70-based vaccines and in autoimmunity. Further progress in this area, however, awaits the identification of the cell surface receptors for extracellular Hsp70 that mediate its immune functions. We have examined a wide range of candidate Hsp70 receptors and find significant binding through two main families of cell surface proteins, including 1) the scavenger receptor (SR) family and 2) C-type lectins of the NK family. In addition, given that the anticancer effects of Hsp70 vaccines have been shown to involve uptake of Ags by APC exposed to Hsp70-tumor Ag complexes, we have examined the ability of the receptors identified here to internalize Hsp70-peptide complexes. Our findings indicate that three members of the SR family (lectin-like oxidized low density lipoprotein receptor 1; fasciclin, epidermal growth factor-like, laminin-type epidermal growth factor-like, and link domain-containing scavenger receptor-1; and SR expressed by endothelial cells-1) are able to bind Hsp70-peptide complexes and mediate its efficient internalization. Indeed, each of the SR was able to mediate efficient uptake of Hsp70 when transfected into Chinese hamster ovary cells previously null for uptake. Curiously, Hsp70 internalization occurs independently of the intracellular domains of the SR, and Hsp70 uptake could be detected when the entire intracellular domain of lectin-like oxidized low density lipoprotein receptor 1 or SR expressed by endothelial cells-1 was truncated. The existence of a wide repertoire of cell surface Hsp70-binding structures may permit intracellular responses to extracellular Hsp70 that are cell specific and discriminate between Hsp70 family members.  相似文献   

7.
A hitchhiker's guide to the human Hsp70 family   总被引:11,自引:0,他引:11       下载免费PDF全文
The human Hsp70 family encompasses at least 11 genes which encode a group of highly related proteins. These proteins include both cognate and highly inducible members, at least some of which act as molecular chaperones. The location of cognate Hsp70s within all the major subcellular compartments is an indication of the importance of these proteins. The expression of several inducible Hsp70 genes is also an indication of the importance of these proteins in the stres response. The existence of multiple genes and protein isoforms has created confusion in the identification and naming of particular family members. We have compiled, from the literature, a list of genes and genetic loci and produced a two-dimensional protein map of the known human Hsp70 family members. This will enable researchers in the field to quickly and reliably identify human Hsp70s. We have also devised a more rational nomenclature for these genes and gene products which, subject to general acceptance, could be extended to Hsp70 families from other species.  相似文献   

8.
Malaria parasites modify their host cell, the mature human erythrocyte. We are interested in the molecules mediating these processes, and have recently described a family of parasite‐encoded heat shock proteins (PfHsp40s) that are targeted to the host cell, and implicated in host cell modification. Hsp40s generally function as co‐chaperones of members of the Hsp70 family, and until now it was thought that human Hsp70 acts as the PfHsp40 interaction partner within the host cell. Here we revise this hypothesis, and identify and characterize an exported parasite‐encoded Hsp70, referred to as PfHsp70‐x. PfHsp70‐x is exported to the host erythrocyte where it forms a complex with PfHsp40s in structures known as J‐dots, and is closely associated with PfEMP1. Interestingly, Hsp70‐x is encoded only by parasite species that export the major virulence factor EMP1, implying a possible role for Hsp70‐x in EMP1 presentation at the surface of the infected erythrocyte. Our data strongly support the presence of parasite‐encoded chaperone/co‐chaperone complexes within the host erythrocyte, which are involved in protein traffic through the host cell. The host–pathogen interaction within the infected erythrocyte is more complex than previously thought, and is driven notonly by parasite co‐chaperones, but also by the parasite‐encoded chaperone Hsp70‐x itself.  相似文献   

9.
Shaner L  Sousa R  Morano KA 《Biochemistry》2006,45(50):15075-15084
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.  相似文献   

10.
Vertebrate cells contain at least 12 different genes for Hsp70 proteins, 3 of which are encoded in the major histocompatibility complex (MHC) class III region. In the human MHC, these are named Hsp70-1, -2, and -Hom. To characterize these proteins, we have determined their substrate binding specificity, their cellular and tissue distribution, and the regulation of their expression. We show for the first time (1) peptide binding specificity of Hsp70-Hom; (2) endogenous expression of Hsp70-Hom in human cell lines; (3) cytoplasmic location of Hsp70-Hom protein under basal conditions and concentration in the nucleus after heat shock; (4) unique RNA expression profiles in human tissues for each of the MHC-encoded Hsp70s, significantly different from that for the constitutive Hsc70; (5) a relative increase in levels of Hsp70-Hom protein, compared with other Hsp70s, in response to interferon gamma; and (6) a specific increase on lipopolysaccharide (LPS) treatment of in vivo messenger RNA levels for the MHC-encoded Hsp70s and the DnaJ homologue, hdj2, relative to other chaperones. The unique tissue distributions and specific up-regulation by LPS of the MHC-encoded Hsp70s suggest some specialization of functions for these members of the Hsp70 family, possibly in the inflammatory response.  相似文献   

11.
Structure of the Hsp110:Hsc70 nucleotide exchange machine   总被引:1,自引:0,他引:1  
Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein's NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs.  相似文献   

12.
Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana   总被引:3,自引:0,他引:3       下载免费PDF全文
The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress.  相似文献   

13.
The Hsp70 family is one of the most important and conserved molecular chaperone families. It is well documented that Hsp70 family members assist many cellular processes involving protein quality control, as follows: protein folding, transport through membranes, protein degradation, escape from aggregation, intracellular signaling, among several others. The Hsp70 proteins act as a cellular pivot capable of receiving and distributing substrates among the other molecular chaperone families. Despite the high identity of the Hsp70 proteins, there are several homologue Hsp70 members that do not have the same role in the cell, which allow them to develop and participate in such large number of activities. The Hsp70 proteins are composed of two main domains: one that binds ATP and hydrolyses it to ADP and another which directly interacts with substrates. These domains present bidirectional heterotrophic allosteric regulation allowing a fine regulated cycle of substrate binding and release. The general mechanism of the Hsp70s cycle is under the control of ATP hydrolysis that modulates the low (ATP-bound state) and high (ADP-bound state) affinity states of Hsp70 for substrates. An important feature of the Hsp70s cycle is that they have several co-chaperones that modulate their cycle and that can also interact and select substrates. Here, we review some known details of the bidirectional heterotrophic allosteric mechanism and other important features for Hsp70s regulating cycle and function.  相似文献   

14.
Molecular Biology Reports - Heat shock protein 70s (Hsp70s) are major members of the heat shock protein family and play a variety of roles to protect plants against stress. Plant Hsp70s are a...  相似文献   

15.
Heat shock protein (Hsp)40s play an essential role in protein metabolism by regulating the polypeptide binding and release cycle of Hsp70. The Hsp40 family is large, and specialized family members direct Hsp70 to perform highly specific tasks. Type I and Type II Hsp40s, such as yeast Ydj1 and Sis1, are homodimers that dictate functions of cytosolic Hsp70, but how they do so is unclear. Type I Hsp40s contain a conserved, centrally located cysteine-rich domain that is replaced by a glycine- and methionine-rich region in Type II Hsp40s, but the mechanism by which these unique domains influence Hsp40 structure and function is unknown. This is the case because high-resolution structures of full-length forms of these Hsp40s have not been solved. To fill this void, we built low-resolution models of the quaternary structure of Ydj1 and Sis1 with information obtained from biophysical measurements of protein shape, small-angle X-ray scattering, and ab initio protein modeling. Low-resolution models were also calculated for the chimeric Hsp40s YSY and SYS, in which the central domains of Ydj1 and Sis1 were exchanged. Similar to their human homologs, Ydj1 and Sis1 each has a unique shape with major structural differences apparently being the orientation of the J domains relative to the long axis of the dimers. Central domain swapping in YSY and SYS correlates with the switched ability of YSY and SYS to perform unique functions of Sis1 and Ydj1, respectively. Models for the mechanism by which the conserved cysteine-rich domain and glycine- and methionine-rich region confer structural and functional specificity to Type I and Type II Hsp40s are discussed.  相似文献   

16.
Human neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” Upregulation of heat shock proteins that target misfolded aggregation-prone proteins has been proposed as a potential therapeutic strategy to counter neurodegenerative disorders. The heat shock protein 70 (HSP70) family is well characterized for its cytoprotective effects against cell death and has been implicated in neuroprotection by overexpression studies. HSP70 family members exhibit sequence and structural conservation. The significance of the multiplicity of HSP70 proteins is unknown. In this study, coimmunoprecipitation was employed to determine if association of HSP70 family members occurs, including Hsp70B′ which is present in the human genome but not in mouse and rat. Heteromeric complexes of Hsp70B′, Hsp70, and Hsc70 were detected in differentiated human SH-SY5Y neuronal cells. Hsp70B′ also formed complexes with Hsp40 suggesting a common co-chaperone for HSP70 family members.  相似文献   

17.
Type I DnaJs comprise one type of Hsp70 cochaperones. Previously, we showed that two type I DnaJ cochaperones, DjA1 (HSDJ/Hdj-2/Rdj-1/dj2) and DjA2 (cpr3/DNAJ3/Rdj-2/dj3), are important for mitochondrial protein import and luciferase refolding. Another type I DnaJ homolog, DjA4 (mmDjA4/dj4), is highly expressed in heart and testis, and the coexpression of Hsp70 and DjA4 protects against heat stress-induced cell death. Here, we have studied the chaperone functions of DjA4 by assaying the refolding of chemically or thermally denatured luciferase, suppression of luciferase aggregation, and the ATPase of Hsp70s, and compared these activities with those of DjA2. DjA4 stimulates the hydrolysis of ATP by Hsp70. DjA2, but not DjA4, together with Hsp70 caused denatured luciferase to refold efficiently. Together with Hsp70, both DjA2 and DjA4 are efficient in suppressing luciferase aggregation. bag-1 further stimulates ATP hydrolysis and protein refolding by Hsp70 plus DjA2 but not by Hsp70 plus DjA4. Hsp70-2, a testis-specific Hsp70 family member, behaves very similarly to Hsp70 in all these assays. Thus, Hsp70 and Hsp70-2 have similar activities in vitro, and DjA2 and DjA4 can function as partner cochaperones of Hsp70 and Hsp70-2. However, DjA4 is not functionally equivalent in modulating Hsp70s.  相似文献   

18.
Hsp70 molecular chaperones play a variety of functions in every organism, cell type and organelle, and their activities have been implicated in a number of human pathologies, ranging from cancer to neurodegenerative diseases. The functions, regulations and structure of Hsp70s were intensively studied for about three decades, yet much still remains to be learned about these essential folding enzymes. Genome sequencing efforts revealed that most genomes contain multiple members of the Hsp70 family, some of which co-exist in the same cellular compartment. For example, the human cytosol and nucleus contain six highly homologous Hsp70 proteins while the yeast Saccharomyces cerevisiae contains four canonical Hsp70s and three fungal-specific ribosome-associated and specialized Hsp70s. The reasons and significance of the requirement for multiple Hsp70s is still a subject of debate. It has been postulated for a long time that these Hsp70 isoforms are functionally redundant and differ only by their spatio-temporal expression patterns. However, several studies in yeast and higher eukaryotic organisms challenged this widely accepted idea by demonstrating functional specificity among Hsp70 isoforms. Another element of complexity is brought about by specific cofactors, such as Hsp40s or nucleotide exchange factors that modulate the activity of Hsp70s and their binding to client proteins. Hence, a dynamic network of chaperone/co-chaperone interactions has evolved in each organism to efficiently take advantage of the multiple cellular roles Hsp70s can play. We summarize here our current knowledge of the functions and regulations of these molecular chaperones, and shed light on the known functional specificities among isoforms.  相似文献   

19.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly.  相似文献   

20.
Protein folding in the cell is usually aided by molecular chaperones, from which the Hsp70 (Hsp?=?heat shock protein) family has many important roles, such as aiding nascent folding and participating in translocation. Hsp70 has ATPase activity which is stimulated by binding to the J-domain present in co-chaperones from the Hsp40 family. Hsp40s have many functions, as for instance the binding to partially folded proteins to be delivered to Hsp70. However, the presence of the J-domain characterizes Hsp40s or, by this reason, as J-proteins. The J-domain alone can stimulate Hsp70 ATPase activity. Apparently, it also maintains the same conformation as in the whole protein although structural information on full J-proteins is still missing. This work reports the 1H, 15N and 13C resonance assignments of the J-domain of a Hsp40 from Saccharomyces cerevisiae, named Sis1. Secondary structure and order parameter prediction from chemical shifts are also reported. Altogether, the data show that Sis1 J-domain is highly structured and predominantly formed by α-helices, results that are in very good agreement with those previously reported for the crystallographic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号