共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein synthesis elongation factors Tu and Tu.Ts from Caulobacter crescentus: sensitivity to kirromycin and activity in Q beta replicase. 下载免费PDF全文
The protein synthesis elongation factors Tu and Ts are responsible for binding aminoacyl-transfer ribonucleic acid (RNA) to the ribosome. In addition, they perform an undefined function, as the EF-Tu.Ts complex, in the RNA phage RNA replicases. In an effort to obtain insight into these two apparently unrelated roles, we purified the elongation factors from Caulobacter crescentus and compared them to the analogous Escherichia coli polypeptides. Although most physical and functional characteristics were found to be similar, significant differences were found in the molecular weight of EF-Ts and relative affinities of guanine nucleotides, sensitivity to trypsin cleavage, and rate of heat denaturation of EF-Tu. The antibiotic kirromycin was active with EF-Tu from both bacterial species. When C. crescentus EF-Tu.Ts was substituted for the E. coli elongation factors in Q beta phage RNA replicase, an enzyme capable of apparently normal RNA synthetic activity was formed. 相似文献
2.
Jeppesen MG Navratil T Spremulli LL Nyborg J 《The Journal of biological chemistry》2005,280(6):5071-5081
The three-dimensional structure of the bovine mitochondrial elongation factor (EF)-Tu.Ts complex (EF-Tumt.Tsmt) has been determined to 2.2-A resolution using the multi-wavelength anomalous dispersion experimental method. This complex provides the first insight into the structure of EF-Tsmt. EF-Tsmt is similar to Escherichia coli and Thermus thermophilus EF-Ts in the amino-terminal domain. However, the structure of EF-Tsmt deviates considerably in the core domain with a five-stranded beta-sheet forming a portion of subdomain N of the core. In E. coli EF-Ts, this region is composed of a three-stranded sheet. The coiled-coil domain of the E. coli EF-Ts is largely eroded in EF-Tsmt, in which it consists of a large loop packed against subdomain C of the core. The conformation of bovine EF-Tumt in complex with EF-Tsmt is distinct from its conformation in the EF-Tumt.GDP complex. When domain III of bovine EF-Tumt.GDP is superimposed on domain III of EF-Tumt in the EF-Tumt.Tsmt complex, helix B from domain I is also almost superimposed. However, the rest of domain I is rotated relative to this helix toward domain II, which itself is rotated toward domain I relative to domain III. Extensive contacts are observed between the amino-terminal domain of EF-Tsmt and domain I of EF-Tumt. Furthermore, the conserved TDFV sequence of EF-Tsmt also contacts domain I with the side chain of Asp139 contacting helix B of EF-Tumt and inserting the side chain of Phe140 between helices B and C. The structure of the EF-Tumt.Tsmt complex provides new insights into the nucleotide exchange mechanism and provides a framework for explaining much of the mutational data obtained for this complex. 相似文献
3.
4.
5.
Bacterial elongation factor Ts: isolation and reactivity with elongation factor Tu. 总被引:2,自引:0,他引:2 下载免费PDF全文
An improved method for the purification of bacterial polypeptide elongation factor Ts (EF-Ts) from one mesophile (Escherichia coli) and two thermophiles (Bacillus stearothermophilus and PS3) is described. The improvements are both in the facility of isolation and in increased yields. The purified factors were used for cross-reactivity studies with elongation factor Tu (EF-Tu) obtained from the same bacterial strains. In all combinations studied, the efficiency of EF-Ts in catalyzing the exchange of EF-Tu-bound GDP was proportional to the strength of the protein-protein complex. Whereas the factors from the two thermophiles were interchangeable, the mesophilic EF-Ts formed a very weak complex with thermophilic EF-Tu; however, thermophilic EF-Ts formed very strong complexes with mesophilic EF-Tu. Thus, e.g., EF-Tu from E. coli formed a complex with EF-Ts from B. stearothermophilus which was 10 times more stable than the corresponding homologous complex. 相似文献
6.
A M Rojas M Ehrenberg S G Andersson C G Kurland 《Molecular & general genetics : MGG》1984,197(1):36-45
Summary The inhibition of elongation factors G, Tu and Ts by ppGpp was studied in vitro in a translation system with missense frequency and elongation rate similar to those in vivo. ppGpp inhibits EF-G with KI=6x10-5 M. When ppGpp is in twofold excess over GTP and EF-G is the rate-limiting component, the elongation rate is reduced two-fold by ppGpp. EF-Tu is inhibited with KI=7x10-7 M in the absence of EF-Ts. When EF-Ts is added, the binding of ppGpp to EF-Tu becomes successively weaker. 1/KI depends linearly on 1/[Ts] and the intercept at the abscissa gives KI=4x10-5 M. This reflects the binding of ppGpp to the binary TuTs complex. The slope reveals that the binding of EF-Ts to the TuMS binary complex is strong (10-6 M). ppGpp may thus inhibit the cycling of EF-Tu indirectly by the removal of the free EF-Ts by its adsorption to TuMS, as well as directly by simple binding to Tu. EF-Tu inhibition by ppGpp can be fully reversed by high levels of aminoacyl-tRNA only in the presence of EF-Ts and at low ribosomal activity. Our in vitro observations have been extrapolated to in vivo conditions with conclusions as follows: Under strong amino acid starvation ppGpp in two-fold excess over GTP cannot reduce significantly the elongation rate of ribosomes and thereby restore the errors to their normal levels as in the stringent response. Under weak starvation, in contrast, a significant rate reduction can be achieved by the trapping of EF-Ts in complex with TuppGpp. 相似文献
7.
Paracrystalline arrays of protein-synthesis elongation factor Tu. Comparison with polymerized actin.
Homogeneous protein synthesis elongation factor Tu from Escherichia coli forms aggregates at high concentrations of ammonium sulfate which have a filamentous appearance in the light microscope. Electron microscopy of negatively stained preparations shows that these aggregates are paracrystalline, including three different forms. On the basis of analyses by optical diffraction, this polymorphism can be explained in terms of three different tubular foldings of the same basic two-dimensional surface lattice. This can be compared with that underlying the structure of actin filaments, thus providing a crucial test of the putative relationship between the elongation factor and actin [Rosenbusch, J. P. et al. (1976) J. Supramol. Struct. 5, 391-396]. The differences between the surface lattices, in conjunction with the negative results of sensitive immunochemical tests for possible cross-reactivities between the two proteins, suggest that any such relationship is very remote. 相似文献
8.
Cai YC Bullard JM Thompson NL Spremulli LL 《The Journal of biological chemistry》2000,275(27):20308-20314
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA). 相似文献
9.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed. 相似文献
10.
Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes 总被引:2,自引:0,他引:2
Substitution of V20 by G in the consensus element G18HVDHGK24 of EF-Tu (referred to as EF-TuG20) strongly influences the interaction with GDP as well as the GTPase activity [Jacquet, E. & Parmeggiani, A. (1988) EMBO J. 7, 2861-2867]. In an extension of this work we describe additional properties of the mutated factor, paying particular attention to the interaction with the macromolecular ligands. Our results show that the conformational transitions induced by the mutation strongly favor the regeneration of the active complex EF-TuG20.GTP, almost as effectively as with wild-type EF-Tu in the presence of elongation factor Ts. Addition of elongation factor Ts further enhances the rate of the GDP to GTP exchange of the mutated factor. Remarkably, EF-TuG20.GDP can support the enzymatic binding of aminoacyl-tRNA to ribosome.mRNA at low MgCl2 concentration, an effect that with wild-type EF-Tu can only occur in the presence of kirromycin. Our results show that EF-TuG20.GDP shares common features with the GTP-like conformation induced by kirromycin on wild-type EF-Tu. The ability of the ribosome to activate the EF-TuG20 center for GTP hydrolysis is strongly decreased, while the stimulation by aminoacyl-tRNA is conserved. The ribosomal activity is partially restored by addition of aminoacyl-tRNA plus poly(U), showing that codon/anticodon interaction contribute to correct the anomalous interaction between ternary complex and ribosomes. The impaired activity of EF-TuG20 in poly(Phe) synthesis is related to the degree of defective GTP hydrolysis and, most interestingly, it is characterized by a striking increase of the fidelity of translation at high MgCl2 concentration. This effect probably depends on a more selective recognition of the ternary complex by ribosome.mRNA, as a consequence of a longer pausing of EF-TuG20 on the ribosome. In conclusion, position 20 in EF-Tu is important for coordinating the allosteric mechanisms controlling the action of EF-Tu and its ligands. 相似文献
11.
Effect of Thermus thermophilus elongation factor Ts on the conformation of elongation factor Tu 总被引:1,自引:0,他引:1
Affinity labeling in situ of the Thermus thermophilus elongation factor Tu (EF-Tu) nucleotide binding site was achieved with periodate-oxidized GDP (GDPoxi) or GTP (GTPoxi) in the absence and presence of elongation factor Ts (EF-Ts). Lys52 and Lys137, both reacting with GDPoxi and GTPoxi, are located in the nucleotide binding region. In the absence of EF-Ts Lys137 and to a lesser extent Lys52 were accessible to the reaction with GTPoxi. GDPoxi reacted much more efficiently with Lys52 than with Lys137 under these conditions [Peter, M. E., Wittman-Liebold, B. & Sprinzl, M. (1988) Biochemistry 27, 9132-9138]. In the presence of EF-Ts, GDPoxi reacted more efficiently with Lys137 than with Lys52, indicating that the interaction of EF-Ts with EF-Tu.GDPoxi induces a conformation resembling that of the EF-Tu.GDPoxi complex in the absence of EF-Ts. Binding of EF-Ts to EF-Tu.GDP enhances the accessibility of the Arg59-Gly60 peptide bond of EF-Tu to trypsin cleavage. Hydrolysis of this peptide bond does not interfere with the ability of EF-Ts to bind to EF-Tu. EF-Ts is protected against trypsin cleavage by interaction with EF-Tu.GDP. High concentrations of EF-Ts did not interfere significantly with aminoacyl-tRNA.EF-Tu.GTP complex formation. 相似文献
12.
Intrinsic fluorescence of elongation factor Tu in its complexes with GDP and elongation factor Ts 总被引:1,自引:0,他引:1
The intrinsic fluorescence properties of elongation factor Tu (EF-Tu) in its complexes with GDP and elongation factor Ts (EF-Ts) have been investigated. The emission spectra for both complexes are dominated by the tyrosine contribution upon excitation at 280 nm whereas excitation at 300 nm leads to exclusive emission from the single tryptophan residue (Trp-184) of EF-Tu. The fluorescence lifetime of this tryptophan residue in both complexes was investigated by using a multifrequency phase fluorometer which achieves a broad range of modulation frequencies utilizing the harmonic content of a mode-locked laser. These results indicated a heterogeneous emission with major components near 4.8 ns for both complexes. Quenching experiments on both complexes indicated limited accessibility of the tryptophan residue to acrylamide and virtually no accessibility to iodide ion. The quenching patterns exhibited by EF-Tu-GDP and EF-Tu X EF-Ts were, however, different; both quenchers were more efficient at quenching the emission from the EF-Tu x EF-Ts complex. Steady-state and dynamic polarization measurements revealed limited local mobility for the tryptophan in the EF-Tu x GDP complex whereas formation of the EF-Tu x EF-Ts complex led to a dramatic increase in this local mobility. 相似文献
13.
J Weiser K Mikulík Z Zizka J Stastná I Janda A Jiránová 《European journal of biochemistry》1982,129(1):127-132
The ability of EF-Tu to aggregate spontaneously was employed for the purification of homogeneous EF-Tu . GDP from Streptomyces aureofaciens. The formation of filamentous structures in the aggregated EF-Tu was demonstrated in a light microscope. The purified factor, with a specific activity of 19,100 +/- 1,000 units/mg in [3H]GDP exchange, was shown to be active in the translation of poly(U). Aggregated EF-Tu . GDP exhibited almost eight-times lower GDP-exchange capacity at 2 degrees C than at 30 degrees C. This suggests that GDP-binding sites are not freely accessible at lower temperatures in the aggregated factor, in contrast to Escherichia coli polymerized EF-Tu. Turbidimetric assays revealed that the solubilization of diluted aggregated S. aureofaciens EF-Tu is strongly dependent on temperature and causes an increase in the number of accessible GDP-binding sites. 相似文献
14.
The mechanism of the protein-synthesis elongation cycle in eukaryotes. Effect of ricin on the ribosomal interaction with elongation factors 总被引:3,自引:0,他引:3
The functional significance of the post-translocation interaction of eukaryotic ribosomes with EF-2 was studied using the translational inhibitor ricin. Ribosomes treated with ricin showed a decreased rate of elongation accompanied by altered proportions of the different ribosomal phases of the elongation cycle. The content of ribosome-bound EF-2 was diminished by approximately 65% while that of EF-1 was unaffected. The markedly reduced content of EF-2 was caused by an inability of the ricin-treated ribosomes to form high-affinity pre-translocation complexes with EF-2. However, the ribosomes were still able to interact with EF-2 in the form of a low-affinity post-translocation complex. Ricin-treated ribosomes showed an altered ability to stimulate the GTP hydrolysis catalysed by either EF-1 or EF-2. The EF-1-catalysed hydrolysis was reduced by approximately 70%, resulting in a decreased turnover of the quaternary EF-1 X GTP X aminoacyl-tRNA X ribosome complex. In contrast, the EF-2-catalysed hydrolysis was increased by more than 400%, despite the lack of pre-translocation complex formation. The effect was not restricted to empty reconstituted ribosomes since gently salt-washed polysomes also showed an increased rate of GTP hydrolysis. The results indicate that the EF-1- and EF-2-dependent hydrolysis of GTP was activated by a common center on the ribosome that was specifically adapted for promoting the GTP hydrolysis of either EF-1 or EF-2. Furthermore, the results suggest that the GTP hydrolysis catalysed by EF-2 occurred in the low-affinity post-translocation complex. 相似文献
15.
The amounts of the polypeptide chain elongation factors Tu, Ts, and G, and ribosomal protein SI were assessed under various growth conditions using three independent procedures: (a) Immunoprecipitation and gel electrophoresis, (b) radioimmune assay, and (c) activity measurements. It was demonstrated that, during balanced growth of E. coli, the intracellular levels of these proteins increased in proportion to the growth rate, and the ratio of EF-Tu:EF-Ts:EF-G:protein SI was 4-5:1:1:1, at all growth rates. The effects of isoleucine starvation on the rates of synthesis of these proteins were examined using a pair of isogenic stringent and relaxed strains. The syntheses of all these proteins were found to be under the influence of stringent control. These results indicate that in E. coli the syntheses of the above four proteins are regulated in a coordinated manner and are subject to stringent control. 相似文献
16.
17.
18.
19.
We induced the oversynthesis of elongation factors Tu and G by using multicopy plasmids carrying the structural genes for these proteins under the control of the lac operator-promoter. We found no evidence that accumulation of excess elongation factor Tu or G affects the expression of genes for ribosomal proteins or elongation factors. 相似文献
20.
《FEBS letters》1986,202(1):7-11
The method of purification of elongation factor Ts from Streptomyces aureofaciens is described. Purified elongation factors Ts from S. aureofaciens and Escherichia coli were tested in cross-reactivity studies with elongation factors Tu from both species in a GDP exchange reaction under equilibrium and non-equilibrium conditions. Experiments have revealed that slower spontaneous release of GDP from S. aureofaciens EF-Tu is compensated for by higher affinity of homologous EF-Ts towards EF-Tu and thus the initial rates of EF-Ts catalysed GDP exchange can be kept the same in both E. coli and S. aurefaciens in vitro systems. 相似文献