首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Corneal endothelium transports fluid in the absence of net solute transport   总被引:1,自引:0,他引:1  
The corneal endothelium transports fluid from the corneal stroma to the aqueous humor, thus maintaining stromal transparency by keeping it relatively dehydrated. This fluid transport mechanism is thought to be driven by the transcellular transports of HCO(3)(-) and Cl(-) in the same direction, from stroma to aqueous. In parallel to these anion movements, for electroneutrality, there are paracellular Na(+) and transcellular K(+) transports in the same direction. The resulting net flow of solute might generate local osmotic gradients that drive fluid transport. However, there are reports that some 50% residual fluid transport remains in nominally HCO(3)(-) free solutions. We have examined the driving force for this residual fluid transport. We confirm that in nominally HCO(3)(-) free solutions, 48% of control fluid transport remains. When in addition Cl(-) channels are inhibited, 30% of control fluid movement still remains. Addition of a carbonic anhydrase inhibitor has no further effect. These manipulations combined inhibit the transcellular transport of all anions, without which there cannot be any net transport of solute and consequently no local osmotic gradients, yet there is residual fluid movement. Only the further addition of benzamil, an inhibitor of epithelial Na(+) channels, abolishes fluid transport completely. Our data are inconsistent with transcellular local osmosis and instead support the paradigm of paracellular fluid transport driven by electro-osmotic coupling.  相似文献   

3.
This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen–apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.  相似文献   

4.
The corneal endothelium transports fluid from the corneal stroma to the aqueous humor, thus maintaining stromal transparency by keeping it relatively dehydrated. This fluid transport mechanism is thought to be driven by the transcellular transports of HCO3 and Cl in the same direction, from stroma to aqueous. In parallel to these anion movements, for electroneutrality, there are paracellular Na+ and transcellular K+ transports in the same direction. The resulting net flow of solute might generate local osmotic gradients that drive fluid transport. However, there are reports that some 50% residual fluid transport remains in nominally HCO3 free solutions. We have examined the driving force for this residual fluid transport. We confirm that in nominally HCO3 free solutions, 48% of control fluid transport remains. When in addition Cl channels are inhibited, 30% of control fluid movement still remains. Addition of a carbonic anhydrase inhibitor has no further effect. These manipulations combined inhibit the transcellular transport of all anions, without which there cannot be any net transport of solute and consequently no local osmotic gradients, yet there is residual fluid movement. Only the further addition of benzamil, an inhibitor of epithelial Na+ channels, abolishes fluid transport completely. Our data are inconsistent with transcellular local osmosis and instead support the paradigm of paracellular fluid transport driven by electro-osmotic coupling.  相似文献   

5.
A model for control of the transport rate and osmolarity of epithelial fluid (isotonic transport) is presented by using an analogy with the control of temperature and flow rate in a shower. The model brings recent findings and theory concerning the role of aquaporins in epithelia together with measurements of epithelial paracellular flow into a single scheme. It is not based upon osmotic equilibration across the epithelium but rather on the function of aquaporins as osmotic sensors that control the tonicity of the transported fluid by mixing cellular and paracellular flows, which may be regarded individually as hyper- and hypo-tonic fluids, to achieve near-isotonicity. The system is built on a simple feedback loop and the quasi-isotonic behavior is robust to the precise values of most parameters. Although the two flows are separate, the overall fluid transport rate is governed by the rate of salt pumping through the cell. The model explains many things: how cell pumping and paracellular flow can be coupled via control of the tight junctions; how osmolarity is controlled without depending upon the precise magnitude of membrane osmotic permeability; and why many epithelia have different aquaporins at the two membranes.The model reproduces all the salient features of epithelial fluid transport seen over many years but also indicates novel behavior that may provide a subject for future research and serve to distinguish it from other schemes such as simple osmotic equilibration. Isotonic transport is freed from constraints due to limited permeability of the membranes and the precise geometry of the system. It achieves near-isotonicity in epithelia in which partial water transport by co-transporters may be present, and shows apparent electro-osmotic effects. The model has been developed with a minimum of parameters, some of which require measurement, but the model is flexible enough for the basic idea to be extended both to complex systems of water and salt transport that still await a clear explanation, such as intestine and airway, and to systems that may lack aquaporins or use other sensors.  相似文献   

6.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

7.
The mechanism by which fluid is transported across epithelial layers is still unclear. The prevalent idea is that fluid traverses these layers transcellularly, driven by local osmotic gradients secondary to electrolyte transport and utilizing the high osmotic permeability of aquaporins. However, recent findings that some aquaporin knockout mice epithelia transport fluid sow doubts on local osmosis. This review discusses recent evidence in corneal endothelium that points instead to electro-osmosis as the mechanism underlying fluid transport. In this concept, a local recirculating electrical current would result in electro-osmotic coupling at the level of the intercellular junctions, dragging fluid via the paracellular route. The text also mentions possible mechanisms for apical bicarbonate exit from endothelial cells, and discusses whether electro-osmosis could be a general mechanism.  相似文献   

8.
The mechanism of epithelial fluid transport is controversial and remains unsolved. Experimental difficulties pose obstacles for work on a complex phenomenon in delicate tissues. However, the corneal endothelium is a relatively simple system to which powerful experimental tools can be applied. In recent years our laboratory has developed experimental evidence and theoretical insights that illuminate the mechanism of fluid transport across this leaky epithelium. Our evidence points to fluid being transported via the paracellular route by a mechanism requiring junctional integrity, which we attribute to electro-osmotic coupling at the junctions. Fluid movements can be produced by electrical currents. The direction of the movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Aquaporin 1 (AQP1) is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability but not fluid transport, which militates against the presence of sizable water movements across the cell. By contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium predicts experimental results only when based on paracellular electro-osmosis, and not when transcellular local osmosis is assumed instead. Our experimental findings in corneal endothelium have allowed us to develop a novel paradigm for this preparation that includes: (1) paracellular fluid flow; (2) a crucial role for the junctions; (3) hypotonicity of the primary secretion; (4) an AQP role in regulation and not as a significant water pathway. These elements are remarkably similar to those proposed by the Hill laboratory for leaky epithelia.  相似文献   

9.
The relationship between epithelial fluid transport, standing osmotic gradients, and standing hydrostatic pressure gradients has been investigated using a perturbation expansion of the governing equations. The assumptions used in the expansion are: (a) the volume of lateral intercellular space per unit volume of epithelium is small; (b) the membrane osmotic permeability is much larger than the solute permeability. We find that the rate of fluid reabsorption is set by the rate of active solute transport across lateral membranes. The fluid that crosses the lateral membranes and enters the intercellular cleft is driven longitudinally by small gradients in hydrostatic pressure. The small hydrostatic pressure in the intercellular space is capable of causing significant transmembrane fluid movement, however, the transmembrane effect is countered by the presence of a small standing osmotic gradient. Longitudinal hydrostatic and osmotic gradients balance such that their combined effect on transmembrane fluid flow is zero, whereas longitudinal flow is driven by the hydrostatic gradient. Because of this balance, standing gradients within intercellular clefts are effectively uncoupled from the rate of fluid reabsorption, which is driven by small, localized osmotic gradients within the cells. Water enters the cells across apical membranes and leaves across the lateral intercellular membranes. Fluid that enters the intercellular clefts can, in principle, exit either the basal end or be secreted from the apical end through tight junctions. Fluid flow through tight junctions is shown to depend on a dimensionless parameter, which scales the resistance to solute flow of the entire cleft relative to that of the junction. Estimates of the value of this parameter suggest that an electrically leaky epithelium may be effectively a tight epithelium in regard to fluid flow.  相似文献   

10.
Canalicular fluid flow is acknowledged to play a major role in bone functioning, allowing bone cells’ metabolism and activity and providing an efficient way for cell-to-cell communication. Bone canaliculi are small canals running through the bone solid matrix, hosting osteocyte’s dendrites, and saturated by an interstitial fluid rich in ions. Because of the small size of these canals (few hundred nanometers in diameter), fluid flow is coupled with electrochemical phenomena. In our previous works, we developed a multi-scale model accounting for coupled hydraulic and chemical transport in the canalicular network. Unfortunately, most of the physical and geometrical information required by the model is hardly accessible by nowadays experimental techniques. The goal of this study was to numerically assess the influence of the physical and material parameters involved in the canalicular fluid flow. The focus was set on the electro-chemo-mechanical features of the canalicular milieu, hopefully covering any in vivo scenario. Two main results were obtained. First, the most relevant parameters affecting the canalicular fluid flow were identified and their effects quantified. Second, these findings were given a larger scope to cover also scenarios not considered in this study. Therefore, this study gives insight into the potential interactions between electrochemistry and mechanics in bone and provides the rational for further theoretical and experimental investigations.  相似文献   

11.
The lymphatic system is an extensive vascular network featuring valves and contractile walls that pump interstitial fluid and plasma proteins back to the main circulation. Immune function also relies on the lymphatic system's ability to transport white blood cells. Failure to drain and pump this excess fluid results in edema characterized by fluid retention and swelling of limbs. It is, therefore, important to understand the mechanisms of fluid transport and pumping of lymphatic vessels. Unfortunately, there are very few studies in this area, most of which assume Poiseuille flow conditions. In vivo observations reveal that these vessels contract strongly, with diameter changes of the order of magnitude of the diameter itself over a cycle that lasts typically 2-3s. The radial velocity of the contracting vessel is on the order of the axial fluid velocity, suggesting that modeling flow in these vessels with a Poiseuille model is inappropriate. In this paper, we describe a model of a radially expanding and contracting lymphatic vessel and investigate the validity of assuming Poiseuille flow to estimate wall shear stress, which is presumably important for lymphatic endothelial cell mechanotransduction. Three different wall motions, periodic sinusoidal, skewed sinusoidal and physiologic wall motions, were investigated with steady and unsteady parabolic inlet velocities. Despite high radial velocities resulting from the wall motion, wall shear stress values were within 4% of quasi-static Poiseuille values. Therefore, Poiseuille flow is valid for the estimation of wall shear stress for the majority of the lymphangion contractile cycle.  相似文献   

12.
The present study shows that the inclusion of 5% Dextran (average mol. wt. 40 000) in solutions to preserve in vitro rabbit corneal endothelium induces a sizable osmotic flow across the preparation which is superimposed on the existing fluid transport. Furthermore, even after fluid transport ceases due to in vitro deterioration, the Dextran-induced flow remains for some addition time. The osmotic permeability was 162 +/- 17 micrometer/s in the presence of glucose and 451 +/- 84 micrometer/s in its absence. The latter, comparatively high value suggests that such osmotic flow traverses the intracellular junctions. In addition, temporary (10--15 min) imposition of an osmotic gradient has a separate stimulatory 'priming' effect on the rate of fluid transport. Thus, the rate of fluid pumping increased by about 40% after challenge with Dextran. It was further noted that, after addition of Dextran, preparations in the absence of glucose escape gross deterioration for a time longer than those in the presence of glucose. On the other hand, mere addition of Dextran to a glucose-containing solution does not appear to prolong the estimated 'survival time' of the pumping mechanism. The sizable osmotic flows and the priming effect described here may provide a physiological context with which previously described Dextran effects on cornea preservation can now be compared.  相似文献   

13.
Advances in microfabrication have introduced new possibilities for automated, high-throughput biomedical investigations and analysis. Physical effects such as dielectrophoresis (DEP) and AC electrokinetics can be used to manipulate particles in solution to coordinate a sequence of bioanalytical processing steps. DEP is accomplished with non-uniform electric fields that can polarize particles (microbeads, cells, viruses, DNA, proteins, etc.) in suspension causing translational or rotational movement. AC electrokinetics is another phenomena involved with movement of particles in suspension with electric fields and is comprised of both electro-thermal and electro-osmotic effects. This paper investigates single layer electrodes that are effective for particle localization and clustering based on DEP and AC electrokinetic effects. We demonstrate a novel multi-electrode setup capable of clustering particles into an array of discrete bands using activated and electrically floating electrodes. These bands shift to adjacent regions on the electrode surface by altering the electrode activation scheme. The predictability of particle placement to specific locations provides new opportunities for integration and coordination with raster scanning lasers or a charge coupled device (CCD) for advanced biomedical diagnostic devices, and more sophisticated optical interrogation techniques.  相似文献   

14.
Bone represents a porous tissue containing a fluid phase, a solid matrix, and cells. Movement of the fluid phase within the pores or spaces of the solid matrix translates endogenous and exogenous mechanobiological, biochemical and electromechanical signals from the system that is exposed to the dynamic external environment to the cells that have the machinery to remodel the tissue from within. Hence, bone fluid serves as a coupling medium, providing an elegant feedback mechanism for functional adaptation. Until recently relatively little has been known about bone fluid per se or the influences governing the characteristics of its flow. This work is designed to review the current state of this emerging field. The structure of bone, as an environment for fluid flow, is discussed in terms of the properties of the spaces and channel walls through which the fluid flows and the influences on flow under physiological conditions. In particular, the development of the bone cell syncytium and lacunocanalicular system are presented, and pathways for fluid flow are described from the systemic to the organ, tissue, cellular and subcellular levels. Finally, exogenous and endogenous mechanisms for pressure-induced fluid movement through bone, including mechanical loading, vascular derived pressure gradients, and osmotic pressure gradients are discussed. The objective of this review is to survey the current understanding of the means by which fluid flow in bone is regulated, from the level of the skeletal system down to the level of osteocyte, and to provide impetus for future research in this area of signal transduction and coupling. An understanding of this important aspect of bone physiology has profound implications for restoration of function through innovative treatment modalities on Earth and in space, as well as for engineering of biomimetic replacement tissue.  相似文献   

15.
The present study extends the two-dimensional analysis of peristaltic motion by Fung and Yih to include an elastic or viscoelastic wall, and a Poiseuille flow. This fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The wall characteristics appear in their equations of motion, which are solved to represent boundary conditions of fluid motion. The influence of Poiseuille flow on pure peristalisis is also investigated.

The phenomenon of the ‘mean flow reversal’ is found to exist both at the center and at the boundaries of the channel. When the walls of the channel are elastic, pure peristalsis involves flow reversal only at the center. This position may shift drastically to the boundaries, if viscous damping forces are considered.  相似文献   


16.
This paper presents a computational framework to simulate the mechanical behavior of fibrous biomaterials with randomly distributed fiber networks. A random walk algorithm is implemented to generate the synthetic fiber network in 2D used in simulations. The embedded fiber approach is then adopted to model the fibers as embedded truss elements in the ground matrix, which is essentially equivalent to the affine fiber kinematics. The fiber–matrix interaction is partially considered in the sense that the two material components deform together, but no relative movement is considered. A variational approach is carried out to derive the element residual and stiffness matrices for finite element method (FEM), in which material and geometric nonlinearities are both included. Using a data structure proposed to record the network geometric information, the fiber network is directly incorporated into the FEM simulation without significantly increasing the computational cost. A mesh sensitivity analysis is conducted to show the influence of mesh size on various simulation results. The proposed method can be easily combined with Monte Carlo (MC) simulations to include the influence of the stochastic nature of the network and capture the material behavior in an average sense. The computational framework proposed in this work goes midway between homogenizing the fiber network into the surrounding matrix and accounting for the fully coupled fiber–matrix interaction at the segment length scale, and can be used to study the connection between the microscopic structure and the macro-mechanical behavior of fibrous biomaterials with a reasonable computational cost.  相似文献   

17.
Sprouting angiogenesis and capillary network formation are tissue scale phenomena. There are also sub-scale phenomena involved in angiogenesis including at the cellular and intracellular (molecular) scales. In this work, a multiscale model of angiogenesis spanning intracellular, cellular, and tissue scales is developed in detail. The key events that are considered at the tissue scale are formation of closed flow path (that is called loop in this article) and blood flow initiation in the loop. At the cellular scale, growth, migration, and anastomosis of endothelial cells (ECs) are important. At the intracellular scale, cell phenotype determination as well as alteration due to blood flow is included, having pivotal roles in the model. The main feature of the model is to obtain the physical behavior of a closed loop at the tissue scale, relying on the events at the cellular and intracellular scales, and not by imposing physical behavior upon it. Results show that, when blood flow is considered in the loop, the anastomosed sprouts stabilize and elongate. By contrast, when the loop is modeled without consideration of blood flow, the loop collapses. The results obtained in this work show that proper determination of EC phenotype is the key for its survival.  相似文献   

18.
The purpose of the present work is to investigate whether the idea of epithelial fluid transport based on electro-osmotic coupling at the level of the leaky tight junction (TJ) can be further supported by a plausible theoretical model. We develop a model for fluid transport across epithelial layers based on electro-osmotic coupling at leaky tight junctions (TJ) possessing protruding macromolecules and fixed electrical charges. The model embodies systems of electro-hydrodynamic equations for the intercellular pathway, namely the Brinkman and the Poisson-Boltzmann differential equations applied to the TJ. We obtain analytical solutions for a system of these two equations, and are able to derive expressions for the fluid velocity profile and the electrostatic potential. We illustrate the model by employing geometrical parameters and experimental data from the corneal endothelium, for which we have previously reported evidence for a central role for electro-osmosis in translayer fluid transport. Our results suggest that electro-osmotic coupling at the TJ can account for fluid transport by the corneal endothelium. We conclude that electro-osmotic coupling at the tight junctions could represent one of the basic mechanisms driving fluid transport across some leaky epithelia, a process that remains unexplained.  相似文献   

19.
The purpose of the present work is to investigate whether the idea of epithelial fluid transport based on electro-osmotic coupling at the level of the leaky tight junction (TJ) can be further supported by a plausible theoretical model. We develop a model for fluid transport across epithelial layers based on electro-osmotic coupling at leaky tight junctions (TJ) possessing protruding macromolecules and fixed electrical charges. The model embodies systems of electro-hydrodynamic equations for the intercellular pathway, namely the Brinkman and the Poisson-Boltzmann differential equations applied to the TJ. We obtain analytical solutions for a system of these two equations, and are able to derive expressions for the fluid velocity profile and the electrostatic potential. We illustrate the model by employing geometrical parameters and experimental data from the corneal endothelium, for which we have previously reported evidence for a central role for electro-osmosis in translayer fluid transport. Our results suggest that electro-osmotic coupling at the TJ can account for fluid transport by the corneal endothelium. We conclude that electro-osmotic coupling at the tight junctions could represent one of the basic mechanisms driving fluid transport across some leaky epithelia, a process that remains unexplained.  相似文献   

20.
ABSTRACT

In this research, the numerical simulation of a soft polymer micro actuator performance has been investigated using the dissipative particle dynamics method in electro-osmotic flow. Effective factors including electro-osmotic flow and polymer chain parameters have been studied. First of all, considering a wide range of electro-osmotic parameters, the validation of analytical results is carried out in a simple micro channel. The electric field and zeta potential changes are linearly related to the flow rate, and the kh parameter behaves nonlinearly to around the kh?=?10. In the following, a convergent–divergent channel is used for the soft micro actuator simulation in which a polymer chain as a heart of actuation is embedded in the middle. As the main control parameter, the direction of the electric field is changed every 4?s, and it leads to a reciprocating motion. The numerical results indicate that the displacement of the soft polymer chain will be increased by enhancing the electric field, the number of beads, decreasing the harmonic bond coefficient and also exposing more length of a polymer chain in front of fluid flow. The results of this study may be useful for some future applications such as artificial fibres and muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号