首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The present study investigated the effects of submaximal sustained and maximal repetitive contractions on the compliance of human vastus lateralis (VL) tendon and aponeurosis in vivo using two different fatiguing protocols. Twelve male subjects performed three maximum voluntary isometric contractions (MVC) of the knee extensors before and after two fatiguing protocols on a dynamometer. The first fatiguing protocol consisted of a long-lasting sustained isometric knee extension contraction at 25% MVC until failure (inability to hold the defined load). The second fatiguing protocol included long-lasting isokinetic (90°/s) knee extension contractions, where maximum moment was exerted and failure was proclaimed when this value fell below 70% of unfatigued maximum isokinetic moment. Ultrasonography was used to determine the elongation and strain of the VL tendon and aponeurosis. Muscle fatigue was indicated by a significant decrease in maximum resultant knee extension moment (p < 0.05) observed during the MVCs after both long-lasting contractions. No significant (p > 0.05) differences in elongation and strain of the VL tendon and aponeurosis were found, when compared every 300 N (tendon force) before and after the fatiguing protocols. The present data indicate, that the VL tendon and aponeurosis in vivo do not suffer from changes in the compliance neither after long-lasting static mechanical loading (strain ~3.2%) nor after long-lasting cyclic mechanical loading (strain 6.2–5.5%).  相似文献   

2.
The purposes of this study were to examine (a) whether the morphological properties of the muscle gastrocnemius medialis (GM) contribute to the known enhanced muscle fatigue resistance during submaximal sustained isometric plantar flexion contraction of old compared to young adults and (b) whether a submaximal fatiguing contraction differently affects the mechanical properties of the GM tendon and aponeurosis of old and young adults. Fourteen old and 12 young male subjects performed maximal voluntary isometric plantar flexions (MVC) on a dynamometer before and after a submaximal fatiguing task (40% MVC). Moments and EMG signals from the gastrocnemius medialis and lateralis, soleus and tibialis anterior muscles were measured. The elongation of the GM tendon and aponeurosis and the morphological properties of its contractile element were examined by means of ultrasonography. The old adults showed lower maximal ankle joint moment, stiffness and fascicle length in both tested conditions. The submaximal fatiguing contraction did not affect the force-strain relationship of the GM tendon and aponeurosis of either young or old adults. The time to task failure was longer for the old adults and was strongly correlated with the fascicle length (r(2)=0.50, P<0.001). This provides evidence on that the lower ratio of the active muscle volume to muscle force for the old adults might be an additional mechanism contributing to the known age related increase in muscle fatigue resistance.  相似文献   

3.
The aim of the present study was to examine whether or not the compliance of the gastrocnemius medialis (GM) tendon and aponeurosis is influenced by submaximal fatiguing efforts. Fourteen elderly male subjects performed isometric maximal voluntary plantarflexion contractions (MVC) on a dynamometer before and after two fatiguing protocols. The protocols consisted of: (1) submaximal concentric isokinetic contractions (70% isokinetic MVC) at 60 degrees /s and (2) a sustained isometric contraction (40% isometric MVC) until failure to hold the defined moment. Ultrasonography was used to determine the elongation and strain of the GM tendon and aponeurosis. To account for the axis misalignment between ankle and dynamometer, the kinematics of the leg were captured at 120 Hz. The maximum moment decreased from 85.9+/-17.9 Nm prior fatigue to 79.2+/-19 Nm after isokinetic fatigue and to 69.9+/-16.4 Nm after isometric fatigue. The maximal strain of the GM tendon and aponeurosis before fatigue, after isokinetic and after isometric fatigue were 4.9+/-1.1%, 4.4+/-1.1% and 4.3+/-1.1% respectively. Neither the strain nor the elongation showed significant differences before and after each fatiguing task at any 100 N step of the calculated tendon force. This implies that the compliance was not altered after either the isokinetic or the isometric fatiguing task. Therefore it was concluded that the strains during the performed submaximal fatiguing tasks, were too small to provoke any structural changes in tendon and aponeurosis.  相似文献   

4.
The purpose of the present study was to investigate whether the mechanical properties (i.e. force strain relationship) of the triceps surae tendon and aponeurosis relate to the performed sport activity in an intensity-dependent manner. This was done by comparing sprinters with endurance runners and subjects not active in sports. Sixty-six young male subjects (26+/-5 yr; 183+/-6 cm; 77.6+/-6.7 kg) participated in the study. Ten of these subjects were adults not active in sports, 28 were endurance runners and 28 sprinters. All subjects performed isometric maximal voluntary plantar flexion contractions (MVC) on a dynamometer. The distal aponeuroses of the gastrocnemius medialis (GM) was visualised by ultrasound during the MVC. The results showed that only the sprinters had higher normalised stiffness (relationship between tendon force and tendon strain) of the triceps surae tendon and aponeurosis and maximal calculated tendon forces than the endurance runners and the subjects not active in sports. Furthermore, including the data of all 66 examined participants tendon stiffness correlated significantly (r=0.817, P<0.001) with the maximal tendon force achieved during the MVC. It has been concluded that the mechanical properties of the triceps surae tendon and aponeurosis do not show a graded response to the intensity of the performed sport activity but rather remain at control level in a wide range of applied strains and that strain amplitude and/or frequency should exceed a given threshold in order to trigger additional adaptation effects. The results further indicate that subjects with higher muscle strength possibly increase the margin of tolerated mechanical loading of the tendon due to the greater stiffness of their triceps surae tendon and aponeurosis.  相似文献   

5.
This study compared the steadiness of submaximal contractions with the knee extensor muscles in young and old adults. Twenty young and twenty old subjects underwent assessment of isometric maximum voluntary contraction (MVC), one-repetition maximum (1-RM) strength, and steadiness during isometric, concentric, and eccentric contractions with the knee extensor muscles. The old adults displayed 33% lower MVC force and a 41% lower 1-RM load. The coefficient of variation for force was significantly greater for the old adults during isometric contractions at 2, 5, and 10% of MVC but not at 50% MVC. The decline in steadiness at low forces experienced by the men was marginally greater than that experienced by the women. The steadiness of concentric and eccentric contractions was similar in young and old adults at 5, 10, and 50% of 1-RM load. Old subjects exhibited greater coactivation of an antagonist muscle compared with young subjects during the submaximal isometric and anisometric contractions. These results indicate that, whereas the ability to exert steady submaximal forces with the knee extensor muscles was reduced in old adults, fluctuations in knee joint angle during slow movements were similar for young and old adults.  相似文献   

6.
The purpose of this study was to examine the effects of aging and endurance running on the mechanical and morphological properties of different muscle-tendon units (MTUs) in vivo. The investigation was conducted on 30 elderly and 19 young adult males. For the analysis of possible MTU adaptation in response to endurance running the subjects were divided into two subgroups: non-active vs. endurance-runners. All subjects performed isometric maximal voluntary plantarflexion and knee extension contractions on a dynamometer. The distal aponeurosis of the gastrocnemius medialis (GM) and vastus lateralis (VL) during plantarflexion and knee extensions and the muscle architecture of the GM and VL were visualized by ultrasonography. The maximal knee and ankle joint moment were higher for the young compared to the elderly population (p<0.05). No identifiable differences in muscle architecture between young and elderly subjects were detected in VL and GM. Aging results in a reduced (p<0.05) normalized stiffness of the quadriceps femoris tendon and aponeurosis, which were not identifiable for the triceps surae. In contrast, the properties of both MTUs showed no major differences between endurance-runners and the non-active group (p>0.05). Only pennation angle at the GM were higher for the runners compared to the non-active group (p<0.05). The present results indicate that tendon changes related to aging do not occur proportionally in different MTUs. Furthermore, it seems that the extra stress and load imposed on high-load-bearing MTUs during endurance running may not be sufficient to produce significant adaptative processes in the mechanical parameters analyzed.  相似文献   

7.
The present study aimed to investigate the effects of low-load resistance training with vascular occlusion on the specific tension and tendon properties by comparing with those of high-load training. Nine participants completed 12 weeks (3 days/week) of a unilateral isotonic training program on knee extensors. One leg was trained using low load (20% of 1 RM) with vascular occlusion (LLO) and other leg using high load (80% of 1 RM) without vascular occlusion (HL). Before and after training, maximal isometric knee extension torque (MVC) and muscle volume were measured. Specific tension of vastus lateralis muscle (VL) was calculated from MVC, muscle volume, and muscle architecture measurements. Stiffness of tendon-aponeurosis complex in VL was measured using ultrasonography during isometric knee extension. Both protocols significantly increased MVC and muscle volume of quadriceps femoris muscle. Specific tension of VL increased significantly 5.5% for HL, but not for LLO. The LLO protocol did not alter the stiffness of tendon-aponeurosis complex in knee extensors, while the HL protocol increased it significantly. The present study demonstrated that the specific tension and tendon properties were found to remain following low-load resistance training with vascular occlusion, whereas they increased significantly after high-load training.  相似文献   

8.
The present study aimed to investigate the effects of repetitive muscle contractions on the elasticity of human tendon structures in vivo. Before and after each endurance test, the elongation of the tendon and aponeurosis of vastus lateralis muscle (L) was directly measured by ultrasonography while the subjects performed ramp isometric knee extension up to maximal voluntary isometric contraction (MVC). Six male subjects performed muscle endurance tests that consisted of knee extension tasks with four different contraction modes: 1) 50 repetitions of maximal voluntary eccentric action for 3 s with 3 s of relaxation (ET1), 2) three sets of 50 repetitions of MVC for 1 s with 3 s of relaxation (ET2), 3) 50 repetitions of MVC for 3 s with 3 s of relaxation (ET3), and 4) 50 repetitions of 50% MVC for 6 s with 6 s of relaxation (ET4). In ET1 and ET2, there were no significant differences in L values at any force production levels between before and after endurance tests. In the cases of ET3 and ET4, however, the extent of elongation after the completion of the tests tended to be greater. The L values above 330 N in ET3 and 440 N in ET4, respectively, were significantly greater after endurance tests than before. These results suggested that the repeated longer duration contractions would make the tendon structures more compliant and that the changes in the elasticity might be not be affected by either muscle action mode or force production level but by the duration of action.  相似文献   

9.
The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.  相似文献   

10.
The purpose of this study was to examine the effect of different muscle contraction modes and intensities on patellar tendon moment arm length (d(PT)). Five men performed isokinetic concentric, eccentric and passive knee extensions at an angular velocity of 60 deg/s and six men performed gradually increasing to maximum effort isometric muscle contractions at 90( composite function) and 20( composite function) of knee flexion. During the tests, lateral X-ray fluoroscopy imaging was used to scan the knee joint. The d(PT) differences between the passive state and the isokinetic concentric and extension were quantified at 15( composite function) intervals of knee joint flexion angle. Furthermore, the changes of the d(PT) as a function of the isometric muscle contraction intensities were determined during the isometric knee extension at 90( composite function) and 20( composite function) of knee joint flexion. Muscle contraction-induced changes in knee joint flexion angle during the isometric muscle contraction were also taken into account for the d(PT) measurements. During the two isometric knee extensions, d(PT) increased from rest to maximum voluntary muscle contraction (MVC) by 14-15%. However, when changes in knee joint flexion angle induced by the muscle contraction were taken into account, d(PT) during MVC increased by 6-26% compared with rest. Moreover, d(PT) increased during concentric and eccentric knee extension by 3-15%, depending on knee flexion angle, compared with passive knee extension. These findings have important implications for estimating musculoskeletal loads using modelling under static and dynamic conditions.  相似文献   

11.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

12.
The purpose of this investigation was to determine the mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque (or force) relationships during isokinetic and isometric muscle actions of the biceps brachii. Ten adults (mean +/- SD age = 21.6 +/- 1.7 years) performed submaximal to maximal isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects randomly performed submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Polynomial regression analyses indicated that MMG amplitude increased linearly with torque during both the isokinetic (r2 = 0.982) and isometric (r2 = 0.956) muscle actions. From 80% to 100% of isometric MVC, however, MMG amplitude appeared to plateau. Cubic models provided the best fit for the MMG MPF versus isokinetic (R2 = 0.786) and isometric (R2 = 0.940) torque relationships, although no significant increase in MMG MPF was found from 10% to 100% of isokinetic PT. For the isometric muscle actions, however, MMG MPF remained relatively stable from 10% to 50% MVC, increased from 50% to 80% MVC, and decreased from 80% to 100% MVC. The results demonstrated differences in the MMG amplitude and MPF versus torque relationships between the isokinetic and isometric muscle actions. These findings suggested that the time and frequency domains of the MMG signal may be useful for describing the unique motor control strategies that modulate dynamic versus isometric torque production.  相似文献   

13.
The purpose of this study was to examine the ability to control knee-extension force during discrete isometric (IC), concentric (CC), and eccentric contractions (EC) in 24 young (mean age +/- SD = 25.3 +/- 2.8 yr) and 24 old (mean age +/- SD = 73.3 +/- 5.5 yr) healthy and active individuals. Subjects were to match a parabola with a time to peak force of 200 ms during IC, CC, and EC at six target levels of force [20, 35, 50, 65, 80, and 90% of the maximum voluntary contraction (MVC)]. ICs were performed at 90 degrees of knee flexion, whereas CCs and ECs ranged from 90 to 80 degrees of knee flexion (0 degrees is full extension) at a slow velocity (25 degrees /s). Results showed that subjects produced similar MVC forces for the three types of contractions. Young subjects produced greater MVC forces than old subjects, and within each age group, men produced greater force than women. The variability (standard deviation) of peak force and impulse in absolute values was greater for young compared with old subjects. When variability was normalized to the force produced [coefficient of variation (CV)], however, old subjects exhibited greater CV than young subjects for peak force and impulse. Both the standard deviation and CV of time to peak force and impulse duration were greater for the old adults. In general, ECs were more variable than ICs and CCs, and old adults exhibited greater CV compared with young adults during rapid, discrete ICs, CCs, and particularly ECs of the quadriceps.  相似文献   

14.
The objective of this study was to investigate the influence of active static stretching on the maximal isometric muscle strength (maximal voluntary contraction [MVC]) and rate of force development (RFD) determined within time intervals of 30, 50, 100, and 200 milliseconds relative to the onset of muscle contraction. Fifteen men (aged 21.3 ± 2.4 years) were submitted on different days to the following tests: (a) familiarization session to the isokinetic dynamometer; (b) 2 maximal isometric contractions for knee extensors in the isokinetic dynamometer to determine MVC and RFD (control); and (c) 2 active static stretching exercises for the dominant leg extensors (10 × 30 seconds for each exercise with a 20-second rest interval between bouts). After stretching, the isokinetic test was repeated (poststretching). Conditions 2 and 3 were performed in random order. The RFD was considered as the mean slope of the moment-time curve at time intervals of 0-30, 0-50, 0-100; 0-150; and 0200 milliseconds relative to the onset of muscle contraction. The MVC was reduced after stretching (285 ± 59 vs. 271 ± 56 N · m, p < 0.01). The RFD at intervals of 0-30, 0-50, and 0-100 milliseconds was unchanged after stretching (p > 0.05). However, the RFD measured at intervals of 0-150 and 0-200 milliseconds was significantly lower after stretching (p < 0.01). It can be concluded that explosive muscular actions of a very short duration (<100 milliseconds) seem less affected by active static stretching when compared with actions using maximal muscle strength.  相似文献   

15.
Recent studies have suggested that the mechanical properties of aponeurosis are not similar to the properties of external tendon. In the present study, the lengths of aponeurosis, tendon, and muscle fascicles were recorded individually, using piezoelectric crystals attached to the surface of each structure during isometric contractions in the cat soleus muscle. We used a surgical microscope to observe the surface of the aponeurosis, which revealed a confounding effect on measures of aponeurosis length due to sliding of a thin layer of epimysium over the proximal aponeurosis. After correcting for this artifact, the stiffness computed for aponeurosis was similar to tendon, with both increasing from around 8 F0/Lc (F0 is maximum isometric force and Lc is tissue length) at 0.1 F0 to 30 F0/Lc at forces greater than 0.4 F0. At low force levels only (0.1 F0), aponeurotic stiffness increased somewhat as fascicle length increased. There was a gradient in the thickness of the aponeurosis along its length: its thickness was minimal at the proximal end and maximal at the distal end, where it converged to form the external tendon. This gradient in thickness appeared to match the gradient in tension transmitted along this structure. We conclude that the specific mechanical properties of aponeurosis are similar to those of tendon. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Warm-up exercises are often advocated prior to strenuous exercise, but the warm-up duration and effect on muscle–tendon behavior are not well defined. The gastrocnemius–Achilles tendon complexes of 18 subjects were studied to quantify the dynamic creep response of the Achilles tendon in-vivo and the warm-up dose required for the Achilles tendon to achieve steady-state behavior. A custom testing chamber was used to determine each subject's maximum voluntary contraction (MVC) during an isometric ankle plantar flexion effort. The subject's right knee and ankle were immobilized for one hour. Subjects then performed over seven minutes of cyclic isometric ankle plantar flexion efforts equal to 25–35% of their MVC at a frequency of 0.75 Hz. Ankle plantar flexion effort and images from dual ultrasound probes located over the gastrocnemius muscle–Achilles tendon and the calcaneus–Achilles tendon junction were acquired for eight seconds at the start of each sequential minute of the activity. Ultrasound images were analyzed to quantify the average relative Achilles tendon strain at 25% MVC force (ε25%MVC) for each minute. The ε25%MVC increased from 0.3% at the start of activity to 3.3% after seven minutes, giving a total dynamic creep of ~3.0%. The ε25%MVC increased by more than 0.56% per minute for the first five minutes and increased by less than 0.13% per minute thereafter. Therefore, following a period of inactivity, a low intensity warm-up lasting at least six minutes or producing 270 loading cycles is required for an Achilles tendon to reach a relatively steady-state behavior.  相似文献   

17.
AIM: To examine the time-of-day (TOD) effect on torque-force/angle, fibre length (FL), tendon stiffness (K), stress, and strain using the quadriceps muscle-tendon complex as a model. METHODS: Twelve healthy young men (aged 27+/-2.0 years) were studied at AM (7h45) and PM (5h45). Maximal isometric contractions were carried out on an isokinetic dynamometer, with real-time recordings of vastus lateralis (VL) FL and patella tendon K using B-mode ultrasonography. Percutaneous electrical twitch doublets superimposed on maximal torque were used to test for muscle activation capacity (AC). RESULTS: At PM, torque and force increased by 16+/-3.0% (P<0.01) over 30-90 degrees knee angles. Where the load was standardised (at 250N) in order to discriminate between torque generation capacity and tendon K changes, PM relative to AM, there were 8% and 13% (P<0.01) reductions in relaxed and contracted FL, respectively. Average K decreased by 21% (P<0.001) and the maximal stress and strain were increased at PM by 11% and 16%, respectively (P<0.01). No TOD effect on AC was seen. CONCLUSION: The quadriceps torque or force-angle relationships shift upwards at PM vs. AM, with no shift in the position of the optimal knee angle. This torque or force increase appears not to be centrally modulated. Although K decreases with TOD thereby potentially shortening the working length of the sarcomeres, these changes overall do not affect the ability of the muscle to produce greater torque in the evening.  相似文献   

18.
For static and dynamic conditions muscle geometry of the musculus gastrocnemius medialis of the rat was compared at different muscle lengths. The dynamic conditions differed with respect to isokinetic shortening velocity (25, 50 and 75 mm/s) of the muscle-tendon complex and in constancy of force (isotonic) and velocity (isokinetic) during shortening. Muscle geometry was characterized by fibre length and angle as well as aponeurosis length and angle. At high isokinetic shortening velocities (50 and 75 mm/s) small differences in geometry were found with respect to isometric conditions: aponeurosis lengths differed maximally by -2%, fibre length only showed a significant increase (+3.2%) at the highest shortening velocity. The isotonic condition only yielded significant differences of fibre angle (-4.5%) in comparison with isometric conditions. No significant differences of muscle geometry were found when comparing isotonic with isokinetic conditions of similar shortening velocity. The small differences of geometry between isometric and dynamic conditions are presumably due to the lower muscle force in the dynamic condition and the elastic behaviour of the aponeurosis. It is concluded that, unless very high velocities of shortening are used, the relationship between muscle geometry and muscle length in the isometric condition may be used to describe muscle geometry in the dynamic condition.  相似文献   

19.
AIM: This study examined the electromyographic (EMG) activity of knee extensor agonists and a knee extensor antagonist muscle during fatiguing isometric extensions across a range of force levels. METHODS: Five female subjects performed isometric knee extensions at 25%, 50%, 75% and 100% of their maximal voluntary contraction (MVC) with the knee flexed to 75 degrees. Surface EMG (SEMG) was recorded with bipolar electrodes from the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF) and the root-mean-squared (RMS) amplitude and the percentage frequency compression of these recordings were calculated. Commonality and cross talk between recordings were also examined. RESULTS: Cross talk between recordings was deemed negligible despite significant levels of commonality between the agonist and antagonist SEMG, which was attributed to common drive. SEMG RMS amplitude increased significantly for all muscles during the 25%, 50%, 75% MVC knee extensions until task failure, and decreased significantly for 100% MVC. The frequency spectrum of the SEMG compressed significantly for all muscles and % MVC levels. The VM, VL and BF SEMG recordings responded similarly to fatigue. The RF's frequency spectrum compressed to a significantly higher degree. CONCLUSIONS: The VM, VL, RF, and BF fatigue in parallel, with high similarity between VM, VL and BF, giving support to the concept of a shared agonist-antagonist motoneuron pool.  相似文献   

20.
The present study aimed to investigate the effect of isometric training on the elasticity of human tendon structures. Eight subjects completed 12 wk (4 days/wk) of isometric training that consisted of unilateral knee extension at 70% of maximal voluntary contraction (MVC) for 20 s per set (4 sets/day). Before and after training, the elongation of the tendon structures in the vastus lateralis muscle was directly measured using ultrasonography while the subjects performed ramp isometric knee extension up to MVC. The relationship between the estimated muscle force and tendon elongation (L) was fitted to a linear regression, the slope of which was defined as stiffness of the tendon structures. The training increased significantly the volume (7.6+/-4.3%) and MVC torque (33.9+/-14.4%) of quadriceps femoris muscle. The L values at force production levels beyond 550 N were significantly shorter after training. The stiffness increased significantly from 67.5+/-21.3 to 106.2+/-33.4 N/mm. Furthermore, the training significantly increased the rate of torque development (35.8 +/- 20.4%) and decreased electromechanical delay (-18.4+/-3.8%). Thus the present results indicate that isometric training increases the stiffness and Young's modulus of human tendon structures as well as muscle strength and size. This change in the tendon structures would be assumed to be an advantage for increasing the rate of torque development and shortening the electromechanical delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号