首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present paper provides a general overview of the factors involved in both the kinetics and the selectivity of partial acylation reactions of polyols (sugars). Different kinetic strategies for maximum production of intermediate esters of various polyols and monosaccharides are reported and discussed. Physicochemical requirements for obtaining maximum selectivities and complementary strategies for reducing reaction times are discussed. The reactions studied include glycerol, glucose, fructose, mannose, sorbitol and an alkyl glucoside as precursors. The high selectivity towards the monoglyceride in the presence and absence of a solvent has been attributed to a combination of the precipitation of the desired ester, use of glycerol in excess and the relatively low solubility of the fatty acid in the system. Unlike the reaction in the presence of a solvent, the reaction in a solvent-free medium produces the diester first. The monoester only accumulates in the medium as a consequence of disproportionation and glycerolysis reactions of the diester formed earlier. Selective esterification of solid sugars (polyols) which have an intermediate solubility in acetone is favored at low temperatures at which a sufficient amount of polyol dissolves and concurrent precipitation of the desired product can be achieved. By contrast, use of elevated temperatures is more appropriate for selective partial esterification of polyols, which are the most soluble in the solvent employed. Polyols (sugars) which are the less soluble into the liquid reaction phase cannot be easily esterified. Diffusional limitations on the rate of dissolution of the solid precursor can be minimized by increasing the surface area of the solid polyol.  相似文献   

2.
Enzymatic synthesis of arginine-based cationic surfactants   总被引:4,自引:0,他引:4  
A novel enzymatic approach for the synthesis of arginine N-alkyl amide and ester derivatives is reported. Papain deposited onto solid support materials was used as catalyst for the amide and ester bond formation between Z-Arg-OMe and various long-chain alkyl amines and alcohols (H2N-Cn2, HO-Cn; n = 8-16) in organic media. Changes in enzymatic activity and product yield were studied for the following variables: organic solvent, aqueous buffer content, support for the enzyme deposition, presence of additives, enzyme loading, substrate concentration, and reaction temperature. The best yields (81-89%) of arginine N-alkyl amide derivatives were obtained at 25 degrees C in acetonitrile with an aqueous buffer content ranging from 0 to 1% (v/v) depending on the substrate concentration. The synthesis of arginine alkyl ester derivatives was carried out in solvent-free systems at 50 or 65 degrees C depending on the fatty alcohol chain length. In this case, product yields ranging from 86 to 89% were obtained with a molar ratio Z-Arg-OMe/fatty alcohol of 0.01. Papain deposited onto polyamide gave, in all cases, both the highest enzymatic activities and yields. Under the best reaction conditions the syntheses were scaled up to the production of 2 g of final product. The overall yields, which include reaction, Nalpha-benzyloxycarbonyl group (Z) deprotection and purification, varied from 53 to 77% of pure (99.9% by HPLC) product.  相似文献   

3.
Intact alveolar macrophages were found to acylate alkyl- and acyllysophospholipids with a high selectivity for arachidonate. A specific mechanism appears responsible for the incorporation of arachidonate into lysophospholipids in intact cells since the kinetic pattern for the formation of the 20:4 species was different from all other species. This specificity was investigated in more detail by examining the enzymatic acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by macrophage membranes; in the absence of CoA, ATP, and Mg2+, this lysophospholipid was acylated with a high preference for arachidonate that was independent of added free fatty acids. The addition of CoA alone increased the rate of acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine, mainly due to an increase in the formation of species other than those containing arachidonate. When CoA, ATP, and Mg2+ were present, the macrophage membranes catalyzed the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine without preference for arachidonate. A different apparent Km and Vmax was observed for reactions involving each cofactor condition. We conclude that the acylation of alkyl- and acyllysophospholipids by rabbit alveolar macrophages occurs by three separate mechanisms: a CoA-independent transacylation, a CoA-dependent transacylation (reverse reaction catalyzed by acyl-CoA acyltransferase), and an acyl-CoA-dependent acylation. The CoA-independent transacylation reaction is unique in that it is specific for arachidonate and accounts for the selective acylation of alkyl- and acyllysophospholipids by arachidonate in membrane preparations of alveolar macrophages. This reaction appears to be extremely important in the remodeling of phospholipid molecular species and the mobilization of arachidonate into ether-linked lipids. The transfer of arachidonate to 1-alkyl-2-lyso-sn-glycero-3-phosphocholine also is of importance in the final inactivation step for platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine), whereby 1-alkyl-2-arachidonoyl-sn-glycerol-3-phosphocholine (a stored precursor of both platelet activating factor and arachidonic acid metabolites) is formed.  相似文献   

4.
K. Okawa  K. Nakajima 《Biopolymers》1981,20(9):1811-1821
The reaction of 2-aziridinecarboxylic acid derivatives with several protic reagents was used to synthesize depsipeptides, dehydroamino acid derivatives, diaminopropionic acid derivatives, and phospho peptide derivatives. The reaction of N-aminoacyl-2-aziridinecarboxylic acid benzyl ester with amino acid ester induced stereoselective transacylation.  相似文献   

5.
The effect of organic solvents on carboxypeptidase Y (a serine carboxypeptidase from yeast)-catalyzed hydrolysis of amino acid ester and peptide synthesis from N-acyl amino acid ester and amino acid amide was investigated.

The Km value of ester hydrolysis increased with an increase in the solvent content. Dioxane was the most effective and dimethyl sulfoxide (DMSO) the least, whilst Kcat showed a tendency to increase slightly in N, N-dimethylformamide (DMF) and DMSO. For dioxane and acetonitrile (MeCN) a maximum was observed.

In peptide formation from Fua-Phe-OEt and Gly-NH2, dioxane and MeCN supported high product yield at molar fractions smaller than ca. 0.05 but the yield decreased significantly at higher fractions, although a relatively constant selectivity (ratio of the peptide bond formed to the ester consumed) was maintained. DMSO gave rather low peptide yields and selectivity even at lower molar fractions. DMF showed an intermediate tendency.

An apparent saturation parameter of the amine component was evaluated and the dissociation constant of a complex between acyl-enzyme and amino acid amide (Kn), as well as the rate constant of aminolysis exerted by the amino acid amide bound correctly on the enzyme (Kn), was calculated by initial rate analysis of peptide formation. In contrast to Km values, Kn decreased with increasing concentrations of organic cosolvent. while a suppressive effect was observed (except for DMSO) on the Kn parameter.

Effects of the solvent practically immiscible in water was also studied by use of the enzyme physically “immobilized” on glass beads.  相似文献   

6.
Coenzyme A-dependent transacylation system in rabbit liver microsomes   总被引:1,自引:0,他引:1  
The activities of cofactor-independent and CoA-dependent transacylation were examined for various rabbit tissues. Liver microsomes were found to exhibit relatively high CoA-dependent transacylation activity, while the cofactor-independent transacylation activity was low. The apparent Km values for CoA were 1.4 microM (acceptor, 1-acyl-sn-glycero-3-phosphocholine (1-acyl-GPC] and 3.8 microM (acceptor, 1-acyl-sn-glycero-3-phosphoethanolamine (1-acyl-GPE], respectively. The apparent Vmax values were 2.6 nmol/min/mg (1-acyl-GPC) and 1.2 nmol/min/mg (1-acyl-GPE), respectively. The CoA-dependent transacylation reaction shows a distinct fatty acid specificity. [14C]18:2 and [14C]20:4 at the 2-positions and [14C]18:0 at the 1-positions of donor phospholipids were transferred to lysophospholipids in the presence of CoA. We observed the formation of considerable amounts of acyl-CoA from these fatty acids during the reaction, without the participation of ATP. The transfer of other fatty acids between phospholipids was shown to be almost nil. The very low transfer of 18:1 was in marked contrast to the effective utilization of 18:1-CoA by acyl-CoA:1-acyl-GPC acyltransferase. The effects of several compounds and heat treatment on these two acylation reactions were also examined. The CoA-dependent transacylation reaction may be important for the selective acylation of certain lysophospholipids, such as 1-acyl-GPE, in living cells with the cooperation of acyl-CoA:lysophospholipid acyltransferase, which generates CoA for the former reaction.  相似文献   

7.
The latex of Euphorbia lathyris can utilize acetate, pyruvate and mevalonate for triterpene synthesis in vitro. Acetyl-CoA, hydroxymethylglutarate, hydroxymethylglutaryl-CoA and isopentenyl pyrophosphate were not effective as precursors for triterpene biosynthesis. Acetate is utilized only by the terpenoid pathway and by the tricarboxylic acid cycle; it is not used for fatty acid synthesis in this system. However, phospholipids were found to be efficient acyl donors for triterpene ester synthesis. The observed selectivity of precursor utilization as well as the observed rates for product formation indicate separate sites for triterpenol and triterpene ester synthesis and that one is not precursor for the other.  相似文献   

8.
Acylation of fatty acids to hydroxy groups in cells generally require activation to a thioester (ACP or CoA) or transacylation from another oxygen ester. We now show that microsomal membranes from Arabidopsis leaves efficiently acylate free fatty acids to long chain alcohols with no activation of the fatty acids to thioesters prior to acylation. Studies of the fatty alcohol and fatty acids specificities of the reaction in membranes from Arabidopsis leaves revealed that long chain (C18-C24) unsaturated fatty alcohols and C18-C22 unsaturated fatty acids were preferred. Microsomal preparations from Arabidopsis roots and leaves and from yeast efficiently synthesized ethyl esters from ethanol and free fatty acids. This reaction also occurred without prior activation of the fatty acid to a thioester. The results presented strongly suggest that wax ester and ethyl ester formation are carried out by separate enzymes. The physiological significance of the reactions in plants is discussed in connection to suberin and cutin synthesis. The results also have implication regarding the interpretation of lipid metabolic experiments done with microsomal fraction.  相似文献   

9.
The activities of three acylation systems for 1-alkenylglycerophosphoethanolamine (1-alkenyl-GPE), 1-acyl-GPE and 1-acylglycerophosphocholine (1-acyl-GPC) were compared in rat brain microsomes and the acyl selectivity of each system was clarified. The rate of CoA-independent transacylation of 1-[3H]alkenyl-GPE (approx. 4.5 nmol/10 min per mg protein) was about twice as high as in the case of 1-[3H]acyl-GPE and 1-[14C]acyl-GPC. On the other hand, the rates of CoA-dependent transacylation and CoA + ATP-dependent acylation (acylation of free fatty acids by acyl-CoA synthetase and acyl-CoA acyltransferase) of lysophospholipids were in the order 1-acyl-GPC greater than 1-acyl-GPE much greater than 1-alkenyl-GPE. HPLC analysis of newly synthesized molecular species revealed that the CoA-independent transacylation system exclusively esterified docosahexaenoate and arachidonate, regardless of the lysophospholipid class. The CoA-dependent transacylation and CoA + ATP-dependent acylation systems were almost the same with respect to the selectivities for unsaturated fatty acids when the same acceptor lysophospholipid was used, but some distinctive acyl selectivities were observed with different acceptor lysophospholipids. 1-Alkenyl-GPE selectively acquired only oleate in these two systems. 1-Acyl-GPE and 1-acyl-GPC showed selectivities for both arachidonate and oleate. In addition, an appreciable amount of palmitate was transferred to 1-acyl-GPC, not to 1-acyl-GPE, in CoA- or CoA + ATP-dependent manner. The acylation of exogenously added acyl-CoA revealed that the acyl selectivities of the CoA-dependent transacylation and CoA + ATP-dependent acylation systems may be mainly governed through the selective action of acyl-CoA acyltransferase. The preferential utilization of oleoyl-CoA by all acceptors and the different utilization of arachidonoyl-CoA between alkenyl and acyllysophospholipids indicated that there might be two distinct acyl-CoA:lysophospholipid acyltransferases that discriminate between oleoyl-CoA and arachidonoyl-CoA, respectively. Our present results clearly show that all three microsomal acylation systems can be active in the reacylation of three major brain glycerophospholipids and that the higher contribution of the CoA-independent system in the reacylation of ethanolamine glycerophospholipids, especially alkenylacyl-GPE, may tend to enrich docosahexaenoate in these phospholipids, as compared with in the case of diacyl-GPC.  相似文献   

10.
Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence, a phospholipase A2 reaction followed by a transacylation reaction. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of [3H]cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with [3H]cholesteryl oleate. When high density lipoprotein labeled with cholesteryl [14C]oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl [14C]oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of [3H]cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. [3H]Cholesterol production from [3H]cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of [14C]oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a [14C]oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule. Formation of this intermediate allows [3H]cholesterol to be liberated from the enzyme by exchange with unlabeled cholesterol of plasma lipoproteins. The liberated [3H]cholesterol thereby becomes available for reesterification by LCAT as indicated by its appearance as newly synthesized cholesteryl linoleate.  相似文献   

11.
Enzyme stereospecificity and equilibrium thermodynamics can be demonstrated using the coupling of two amino acid derivatives by Thermoase C160. This protease will catalyze peptide bond formation between Z-L-AspOH and L-PheOMe to form the Aspartame precursor Z-L-Asp-L-PheOMe. Reaction completion manifests itself by precipitation of the product. As the product has almost zero solubility, the equilibrium favors condensation and thus a normally hydrolytic enzyme catalyzes the opposite reaction. Neither Z-D-AspOH with L-PheOMe nor Z-L-AspOH with D-PheOMe produces any visible product.  相似文献   

12.
A selective, sensitive and accurate liquid chromatographic method with UV and fluorescence detection was developed, validated and applied for the determination of fluoroquinolones in human plasma. The effects of mobile phase composition, ion-pair and competing-base reagents, buffers, pH, and acetonitrile concentrations were investigated on the separation of six quinolones (cinoxacin, levofloxacin, ciprofloxacin, gatifloxacin, moxifloxacin and trovafloxacin). Sample preparation was carried out by adding internal standard and displacing agent and processing by ultrafiltration. This method uses ultraviolet and fluorescence detection and separation using a C(18) column. The recovery, selectivity, linearity, precision, and accuracy of the method were evaluated from spiked human plasma samples. The method was successfully applied to patient plasma samples in support of a levofloxacin pharmacokinetic study.  相似文献   

13.
Acylation of cellular proteins with endogenously synthesized fatty acids   总被引:14,自引:0,他引:14  
D Towler  L Glaser 《Biochemistry》1986,25(4):878-884
A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [3H]acetate, a general precursor of all fatty acids, using BC3H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [3H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Isoamyl acetate was synthesized by lipase-catalyzed transesterification of ethyl acetate in n-hexane. The selectivity and rates of ester formation decreased when water content of the immobilized enzyme exceeded 3% (w/w). Experimental observations clearly indicate that the substrates as well as the product (ethanol) act as dead-end inhibitors. A ping-pong bi-bi mechanism with competitive inhibition by substrates and products is proposed that predicts the experimental observation satisfactorily.  相似文献   

15.
Bovine pancreatic trypsin was treated with ethylene glycol bis(succinic acid N-hydroxysuccinimide ester). Approximately 8 of 14 lysines per trypsin molecule were modified. This derivative (EG trypsin) was more stable than native between 30 degrees and 70 degrees C: T50 values were 59 degrees C and 46 degrees C, respective. EG trypsin's half-life of 25 min at 55 degrees C was fivefold greater than native's. EG trypsin had a decreased rate of autolysis and retained more activity in aqueous mixtures of 1,4-dioxan, dimethylformamide, dimethylsulfoxide, and acetonitrile. EG trypsin had lower Km values for both amide and ester substrates; its kcat values for two amides (benzoyl-L-arginine p-nitroanilide and benzyloxycarbonyl glycyl-glycyl-arginyl-7-amino-4-methyl coumarin) increased, whereas its kcat value for an ester (thiobenzoyl benzoyloxycarbonyl-L-lysinate) decreased slightly. The specific activity (kcat/Km) of EG trypsin was increased for both amide and ester substrates. EG trypsin gave higher yields and reaction rates than native in kinetically controlled synthesis of benzoyl argininyl-leucinamide in acetonitrile and in t-butanol. Highest peptide yields occurred with EG trypsin in 95% acetonitrile, where 90% of the substrate was converted to product. No peptide synthesis occurred in 95% DMF with either form of trypsin.  相似文献   

16.
Polyunsaturated N-acylethanolamines (NAEs), including anandamide (20:4n-6 NAE), elicit a variety of biological effects through cannabinoid receptors, whereas saturated and monounsaturated NAEs are inactive. Arachidonic acid mobilization induced by treatment of intact mouse peritoneal macrophages with Ca2+ ionophore A23187 had no effect on the production of NAE or its precursor N-acylphosphatidylethanolamine (N-acyl PE). Addition of exogenous ethanolamine resulted in enhanced NAE synthesis by its N-acylation with endogenous fatty acids, but this pathway was not selective for arachidonic acid. Incorporation of (18)O from H2 (18)O-containing media into the amide carbonyls of both NAE and N-acyl PE demonstrated a rapid, constitutive turnover of both lipids.  相似文献   

17.
The hydrolysis of endogenous phosphatidyl ethanolamine and lecithin in rat liver mitochondria has been studied by using mitochondria from rats injected with ethanolamine-1,2-(14)C or choline-1,2-(14)C. A phospholipase A-like enzyme has been demonstrated, which catalyzes the hydrolysis of one fatty acid ester linkage in phosphatidyl ethanolamine and lecithin. Phosphatidyl ethanolamine is hydrolyzed in preference to lecithin and the main reaction products are free fatty acids and lysophosphatidyl ethanolamine. The further breakdown of lysophospholipids appears to be limited in mitochondria, which indicates that lysophospholipase activity is mainly located extramitochondrially. The enzymic system is greatly stimulated by calcium ions, and also slightly by magnesium ions, while EDTA inhibits it almost completely. These findings are discussed in relation to previous observations on the effect of calcium and of EDTA on the functions of mitochondria. The possible function of the mitochondrial phospholipase for the formation of phospholipids with special fatty acids at the alpha- and -position is discussed.  相似文献   

18.
A stopped assay for fatty acid amide hydrolase (FAAH) has been developed, whereby the enzyme reaction product ([(3)H]ethanolamine) was separated from substrate (anandamide [ethanolamine-1-(3)H]), by differential adsorption to charcoal. The assay gave a better extraction efficiency when acidic rather than alkaline charcoal solutions were used to stop the reaction, and a very good ratio of sample/blank was also seen. The acidic charcoal assay gave the expected sensitivities to compounds known to inhibit FAAH (palmitoyltrifluoromethyl ketone, arvanil, AM404 and indomethacin). It is concluded that the acidic charcoal extraction method provides a robust and simple stopped assay for FAAH without the need to use potentially hazardous solvents like chloroform.  相似文献   

19.
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors.In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号