首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The unit-copy plasmid replicon mini-P1 consists of an origin, a gene for an initiator protein, RepA, and a control locus, incA. Both the origin and the incA locus contain repeat sequences that bind RepA. It has been proposed that the incA repeats control replication by sequestering the rate-limiting RepA initiator protein. Here we show that when the concentration of RepA was increased about fourfold beyond its normal physiological level from an inducible source in trans, the copy number of a plasmid carrying the P1 origin increased about eightfold. However, when the origin and a single copy of incA were present in the same plasmid, the copy number did not even double. The failure of an increased supply of RepA to overcome the inhibitory activity of incA is inconsistent with the hypothesis that incA inhibits replications solely by sequestering RepA. We propose that incA, in addition to sequestration, can also restrain replication by causing steric hindrance to the origin function. Our proposal is based on the observation that incA can bind to a RepA-origin complex in vitro.  相似文献   

3.
P1 plasmid replication. Role of initiator titration in copy number control   总被引:24,自引:0,他引:24  
The copy number control locus incA of unit copy plasmid P1 maps in a region containing nine 19 base-pair repeats. Previous results from studies in vivo and in vitro indicated that incA interacts with the plasmid-encoded RepA protein, which is essential for replication. It has been proposed that the repeat sequences negatively control copy number by sequestering the RepA protein, which is rate-limiting for replication. Our results lend further support to this hypothesis. Here we show that the repeats can be deleted completely from P1 miniplasmids and the deletion results in an approximately eightfold increase in plasmid copy number. So, incA sequences are totally dispensable for replication and have only a regulatory role. The copy number of incA-deleted plasmids can be reduced if incA sequences are present in trans or are reincorporated at two different positions in the plasmid. This reduction in copy number is not due to lowered expression of the repA gene in the presence of incA. We show that one repeat sequence is sufficient to bind RepA and can reduce the copy number of incA-deleted plasmids. When part of the repeat was deleted, it lost its ability to bind as well as influence copy number. These results show a strong correlation between the capacity of incA repeats to bind RepA protein both in vivo and in vitro, and the function of incA in the control of copy number.  相似文献   

4.
We constructed a system in which wild-type RepA or RepAcop1 protein was supplied in trans in various amounts to coexisting mini-Rts1 plasmids by clones of the repA or repAcop1 gene under the control of the native promoter with or without its operator sequence. RepAcop1 protein which contains a single amino acid substitution (Arg-142 to Lys) within its 288 amino acids could initiate the replication of the mini-Rts1 plasmid efficiently at both 37 and 42 degrees C even if it was supplied in excess. In contrast, excess wild-type RepA inhibited plasmid replication at 37 degrees C but supported replication at 42 degrees C. Therefore, it appears that the initiator activity of RepA is not related to the incompatibility phenotype associated with an excess of RepA protein. An immunoblot analysis revealed that neither RepA nor RepAcop1 synthesis was temperature sensitive and that both were autogenously regulated to a similar extent because of the presence of an operator located immediately upstream of the promoter. Two mutant RepA proteins, each of which contains a 4-amino-acid insertion in the middle of the protein, maintained the autorepressor and incompatibility activities but lost the ori(Rts1)-activating function.  相似文献   

5.
6.
We sequenced the minimum replication region of the virulence plasmid pYVe439-80 from a serogroup O:9 Yersinia enterocolitica. This sequence is 68% homologous on a 1,873-nucleotide stretch to the sequence of the RepFIIA replicon of the resistance plasmid R100. The sequence contains two open reading frames, repA and repB, encoding proteins of 33,478 and 9,568 daltons, respectively. The amino acid sequences of the two proteins are 77 and 55% identical, respectively, to proteins RepA1 and RepA2 of the R100 replicon. Analysis of minicells transformed with a copy number mutant demonstrated that the replication region of pYVe439-80 directs the synthesis of a 33-kilodalton protein. Disruption of repA, encoding this protein, abolished replication. Two regions of pYVe439-80 are 76 and 70% homologous, respectively, to the copy number control antisense RNA and to the origin of replication region of R100. A mutation introduced in the pYVe439-80 DNA corresponding to the R100 sequence encoding the copy number control antisense RNA resulted in an increase in copy number, indicating a functional homology between the two replicons.  相似文献   

7.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

8.
The hemolysin-determining plasmid pAD1 is a member of a widely disseminated family of highly conjugative elements commonly present in clinical isolates of Enterococcus faecalis. The determinants repA, repB, and repC, as well as adjacent iteron sequences, are believed to play important roles in pAD1 replication and maintenance. The repA gene encodes an initiator protein, whereas repB and repC encode proteins related to stability and copy number. The present study focuses specifically on repA and identifies a replication origin (oriV) within a central region of the repA determinant. A small segment of repA carrying oriV was able to support replication in cis of a plasmid vector otherwise unable to replicate, if an intact RepA was supplied in trans. We demonstrate that under conditions in which RepA is expressed from an artificial promoter, a segment of DNA carrying only repA is sufficient for stable replication in E. faecalis. We also show that RepA binds specifically to oriV DNA at several sites containing inverted repeat sequences (i.e., IR-1) and nonspecifically to single-stranded DNA, and related genetic analyses confirm that these sequences play an important role in replication. Finally, we reveal a relationship between the internal structure of RepA and its ability to recognize oriV. An in-frame deletion within repA resulting in loss of 105 nucleotides, including at least part of oriV, did not eliminate the ability of the altered RepA protein to initiate replication using an intact origin provided in trans. The relationship of RepA to other known initiator proteins is also discussed.  相似文献   

9.
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.  相似文献   

10.
11.
Plasmid pEP2 was found to encode a protein, RepA, which is essential and rate limiting for its replication in Escherichia coli and Corynebacterium pseudotuberculosis. Mutations which altered the rate of synthesis of this protein in E. coli affected the copy number and segregational stability of pEP2 in the two hosts. RepA contains 483 amino acid residues and has the calculated molecular weight of 53,925. It shows 45% amino acid residue identity with open reading frame ORF2 of pSR1, a plasmid isolated from Corynebacterium glutamicum (J. A. C. Archer and A. J. Sinskey, J. Gen. Microbiol. 139:1753-1759, 1993). Plasmid pEP2 was shown to accumulate single-stranded DNA corresponding to the RepA coding strand during its replication in E. coli and C. pseudotuberculosis, suggesting that it may replicate by a rolling circle mechanism. However, RepA has no significant sequence homology with the replication initiator proteins of plasmids known to use this mode of replication.  相似文献   

12.
The replicon of the low copy number plasmid P1 uses the three Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE for the efficient initiation of its DNA replication. The only P1-encoded protein required for plasmid replication is the initiator, RepA. Binding of RepA to the origin also represses the promoter for the repA gene, which is located within the origin. We found that repression is incomplete in E. coli strains with mutations in the dnaJ, dnaK, or grpE genes. Since there is no decrease in RepA concentration in the mutant strains, the mutations are likely to affect the protein-DNA or protein-protein reactions required for repression, thereby decreasing RepA binding at its promoter. We also showed that the deficit in repression can be overcome by providing excess RepA, implying that the mechanism of repression is not altered in the mutant strains. Since repression requires RepA binding to the origin, a binding deficit might account for the replication defect in the heat shock mutants.  相似文献   

13.
The promiscuous streptococcal plasmid pLS1 encodes for the 5.1 kDa RepA protein, involved in the regulation of the plasmid copy number. Synthesis of RepA was observed both in Bacillus subtilis minicells and in an Escherichia coli expression system. From this system, the protein has been purified and it appears to be a dimer of identical subunits. The amino acid sequence of RepA has been determined. RepA shows the alpha helix-turn-alpha helix motif typical of many DNA-binding proteins and it shares homology with a number of repressors, specially with the TrfB repressor encoded by the broad-host-range plasmid RK2. DNase I footprinting revealed that the RepA target is located in the region of the promoter for the repA and repB genes. Trans-complementation analysis showed that in vivo, RepA behaves as a repressor by regulating the plasmid copy number. We propose that the regulatory role of RepA is by limitation of the synthesis of the initiator protein RepB.  相似文献   

14.
Translational control by antisense RNA in control of plasmid replication   总被引:3,自引:0,他引:3  
K Nordstr?m  E G Wagner  C Persson  P Blomberg  M Ohman 《Gene》1988,72(1-2):237-240
Control of replication of plasmids involves two processes: measurement of the copy number of the plasmid and adjustment of the replication frequency accordingly. For both these processes IncFII plasmids use an antisense RNA (CopA RNA) that forms a duplex with the upstream region (CopT) of the mRNA of the rate-limiting RepA protein. The kinetics of duplex formation was measured in vitro for the wild type and for a cop mutant plasmid; the mutant showed a reduction in the second-order rate constant for the formation of the RNA duplex and a similar increase in copy number. Hence, the kinetics of duplex formation and the concentration of CopA RNA determines the copy number of the plasmid.  相似文献   

15.
Zoueva OP  Iyer VN  Matula TI  Kozlowski M 《Plasmid》2003,49(2):152-159
The broad-host-range replicon of the plasmid pCU1 has three origins of vegetative replication called oriB, oriS, and oriV. In the multi-origin replicon, individual origins can distinguish among replication factors provided by the host. It has been found that during replication in Escherichia coli polA(-) host, oriS was the only active origin of a mutant pCU1 derivative bearing a mutation in the gene encoding replication initiation protein RepA. To further investigate the capacity of oriS to function in an E. coli polA(-) host we constructed a number of clones of the basic replicon of pCU1 containing oriS as the only replication origin. An oriS construct created with pUC18 could transform the polA(-) strain when RepA was supplied in trans. When the oriS region (between nucleotides 290 and 832) was ligated to an antibiotic resistance Omega fragment, the construct could be recovered as a plasmid from polA(+) strain if functional RepA was provided in trans. Our results therefore indicate that the basic replicon of pCU1, containing oriS as the sole origin, does require RepA to initiate plasmid replication in E. coli  相似文献   

16.
H Zeng  T Hayashi    Y Terawaki 《Journal of bacteriology》1990,172(5):2535-2540
We induced site-directed mutations near the 3' terminus of the gene repA, which encodes the protein of 288 amino acid residues essential for plasmid Rts1 replication, and obtained seven repA mutants. Three of them contained small deletions at the 3' terminus. Mutant repAz delta C4, which encodes a RepA protein that lacks the C-terminal four amino acids, expressed a high-copy-number phenotype and had lost both autorepressor and incompatibility functions. Deletion of one additional amino acid residue to form the RepAz delta C5 protein caused restoration of the wild-type copy number and strong incompatibility. Studies of the remaining four repA mutants, each of which contained a single amino acid substitution near the RepA C terminus, suggested that Lys-268 is involved in both ori(Rts1) activation and autorepressor-incompatibility activities and that Arg-279 contributes to ori(Rts1) activation but not to incompatibility. Lys-268 is part of a dual-lysine sequence with Lys-267 and is located 21 amino acids upstream of the RepA C terminus. A dual-lysine sequence is also found at a similar position in both mini-F RepE and mini-P1 RepA proteins.  相似文献   

17.
Although plasmid copy number varies widely among different plasmid species, normally copy number is maintained within a narrow range for any given plasmid. Such copy number control has been shown to occur by regulation of the rate of plasmid DNA replication. Here we report a novel mechanism by which the pSC101 plasmid also can detect an imbalance between the cellular level of its replication protein, RepA, and plasmid-borne RepA binding sites to inhibit bacterial DNA replication and delay host cell division when RepA is in relative excess. We show that delayed cell division occurs by RepA-mediated induction of the SOS response and can be reversed by over-expression of the host DNA primase, DnaG. The effects of RepA excess are prevented by introducing a surfeit of RepA binding sites. The mechanism reported here may help to limit variation in plasmid copy number and allow repopulation of cells with plasmids when copy number falls--potentially pre-empting plasmid loss in cultures of dividing cells.  相似文献   

18.
19.
The RepA protein of the Rts1 plasmid, consisting of 288 amino acids, is a trans-acting protein essential for replication. A mutant repA gene, repA delta C143, carrying a deletion that removed the 143 C-terminal amino acids of RepA, could transform, but at a low frequency, an Escherichia coli polA strain, JG112, when repA delta C143 was cloned into pBR322 with Rts1 ori in the natural configuration. The transformation was less efficient without the dyad DnaA box in the ori region, and no transformation occurred at 42 degrees C, characteristic of Rts1 replication. A fusion of the 3'-terminal half of repA of the P1 plasmid to repA delta C143 yielded a pBR322 chimeric plasmid that contained Rts1 ori through hybrid (Rts1-P1) repA. This plasmid was maintained much more stably in JG112 at 37 degrees C. At 42 degrees C, however, it was quite unstable. The overproduced hybrid RepA protein showed interference with mini-Rts1 replication in trans and also exhibited an autorepressor function, although both activities were decreased. These findings suggest that the N-terminal half of the RepA molecule of Rts1 is involved in the activation of the replication origin.  相似文献   

20.
The minimal replication origin (ori) of the plasmid pSC101 was defined as an about 220-bp region under the condition that the Rep (or RepA) protein, a plasmid-encoded initiator protein, was supplied in trans. The DnaA box is located at one end of ori, as in other plasmids, like mini-F and P1. The other border is a strong binding site (IR-1) of Rep which is palindromic sequence and lies in an about 50-bp region beyond the repeated sequences (iterons) in ori. This IR-1 is located just upstream of another strong Rep binding site (IR-2), the operator site of the structure gene of Rep (rep), but its function has not been determined. The present study shows that the IR-1 sequence capable of binding to Rep is essential for plasmid replication with a nearly normal copy number. Furthermore, a region between the third iteron and IR-1 is also required in a sequence-specific fashion, since some one-base substitution in this region inactivate the origin function. It is likely that the region also is a recognition site of an unknown protein. Three copy number mutations of rep can suppress any one-base substitution mutation. On the other hand, the sequence of a spacer region between the second and the third iterons, which is similar to that of the downstream region of the third iteron, can be changed without loss of the origin function. The requirement of the region downstream of iterons in pSC101 seems to be unique among iteron-driven plasmid replicons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号