首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary The fermentation of large sugar cane chips (1.0–1.5 in) to ethanol by Zymomonas mobilis CP4 (Z. mobilis) was studied in two glass fermentors operating with culture circulation for agitation (the EX-FERM type): a. A laboratory scale(2.5 liter) cylindrical vessel; b. A bench scale (8 liter) wide vessel. Z. mobilis cultures consumed 89–96% of the cane sucrose, converting it to ethanol by 90–97% of the theoretical yield in the laboratory scale fermentor and by 83–90% in the bench scale fermentor culture. Comparative Saccharomyces spp. cultures in laboratory fermentor consumed 96–98% of the cane sucrose, with ethanol conversion of only 75–79% of the theoretical yield.These preliminary results indicated that sucrose in agricultural size sugar cane chips was ethanol fermentable as compared to small size sugar cane chips or to sugar cane juice. Z. mobilis CP4 cultures converted sucrose more efficiently to ethanol than Saccharomyces spp. as shown in the laboratory scale fermentor studies.The ethanol yields in a wide bench scale fermentor cultures were slightly lower than in a laboratory fermentor.  相似文献   

2.
Summary The ethanol yield was not affected and the ethanol productivity increased (10%) when linearly decreasing feeding rates were used instead of constant feeding rates in fed-batch ethanol fermentations.Nomenclature F reactor feeding rate (L.h–1) - ME mass of ethanol in the fermentor (g) - Ms mass of TRS in the fermentor (g) - Mx mass of yeast cells (dry matter) in the fermentor (g) - P ethanol productivity (g.L–1.h–1) - s standard deviation - So TRS concentration in the feeding mash (g.L–1) - t time (h) - T fermentor filling-up time (h) - TRS total reducing sugars calculated as glucose (g.L–1) - Xo yeast cells concentration (dry matter) in the inoculum (g.L–1) - average ethanol yield (% of the theoretical value)  相似文献   

3.
Ethanol production in a continuous fermentation/membrane pervaporation system   总被引:12,自引:0,他引:12  
The productivity of ethanol fermentation processes, predominantly based on batch operation in the U.S. fuel ethanol industry, could be improved by adoption of continuous processing technology. In this study, a conventional yeast fermentation was coupled to a flat-plate membrane pervaporation unit to recover continuously an enriched ethanol stream from the fermentation broth. The process employed a concentrated dextrose feed stream controlled by the flow rate of permeate from the pervaporation unit via liquid-level control in the fermentor. The pervaporation module contained 0.1 m2 commercially available polydimethylsiloxane membrane and consistently produced a permeate of 20%–23% (w/w) ethanol while maintaining a level of 4%–6% ethanol in a stirred-tank fermentor. The system exhibited excellent operational stability. During continuous operation with cell densities of 15–23 g/l, ethanol productivities of 4.9–7.8 gl–1 h–1 were achieved utilizing feed streams of 269–619 g/l glucose. Pervaporation flux and ethanol selectivities were 0.31–0.79 lm–2 h–1 and 1.8–6.5 respectively.  相似文献   

4.
Summary The ethanol yield was not affected and the ethanol productivity was increased when exponentially decreasing feeding rates were used instead of constant feeding rates in fed batch ethanol fermentations. The influences of the initial sugar feeding rate on the ethanol productivity, on the constant ethanol production rate during the feeding phase and on the initial ethanol production specific rate are represented by Monod-like equations.Nomenclature F reactor feeding rate (L.h–1) - Fo initial reactor feeding rate (L.h–1) - K time constant; see equation (l) (h–1) - ME mass of ethanol in the fermentor (g) - Ms mass of TRS in the fermentor (g) - Mx mass of yeast cells (dry matter) in the fermentor (g) - P ethanol productivity (g.L–1.h–1) - R ethanol constant production rate during the feeding phase (g.h–1) - s standard deviation - So TRS concentration in the feeding mash (g.L–1) - t time (h) - T fermentor filling-up-time (h) - T time necessary to complete the fermentation (h) - TRS total reducing sugars calculated as glucose (g.L–1) - Vo volume of the inoculum (L) - Vf final volume of medium in the fermentor (L) - Xo yeast concentration of the inoculum (dry matter) (g.L–1) - ethanol yield (% of the theoretical value) - initial specific rate of ethanol production (h–1)  相似文献   

5.
Of the 29 potentially denitrifying organisms isolated from a denitrifying reactor (DNR) of a fertilizer company, two isolates; I-4 and I-5 were recognized as denitrifiers. Under aerobic conditions, with fusel oil as the carbon source, the organisms decreased nitrate from 1200 mg l–1 to 100 mg l–1 in 48 h. Optimal growth conditions for biological removal of nitrate were established in batch culture. The system was scaled up to 4-L and 50-L bioreactors under continuous culture conditions. Up to 95–100% nitrate removal was achieved in the 50-L bioreactor at a COD:NO3–N ratio of 3.45 with a retention time of 48 h. The isolates showed 1.5 fold higher denitrifying activity than reported previously.  相似文献   

6.
Summary The transfer of plasmids was studied in a stirred fermentor in the course of mixed batch cultures combining recombinant strains of Lactococcus lactis subsp. lactis (donor strains) with L. lactis subsp. lactis CNRZ 268M3 (recipient strain). Donor strains contained one or two of the following plasmids (coding for erythromycin or chloramphenicol resistance): pIL205 (self-transmissible), pIL252, pIL253 (non-transmissible but mobilizable by pIL205, respectively small and large copy number) and pE194 (inserted in the chromosome). Only self-transmissible plasmid pIL205 was transferred, with frequencies ranging from 10–7 to 10–8 after 12 h of fermentation. These frequencies were 60–400 times lower than in unstirred M17 broth and 100 000 times lower than on agar medium. In the latter case, non-transmissible plasmids pIL252 and pIL253 were mobilized by pIL205 with a frequency of about 10–5–10–6. Correspondence to: C.-Y. Boquien  相似文献   

7.
Thermomyces lanuginosus, isolated from self-heated jute stacks in Bangladesh, was able to produce a very high level of cellulase-free xylanase in shake cultures using inexpensive lignocellulosic biomass. Of the nine lignocellulosic substrates tested, corn cobs were found to be the best inducer of xylanase activity. The laboratory results of xylanase production have been successfully scaled up to VABIO (Voest-Alpine Biomass Technology Center) scale using a 15-m3 fermentor for industrial production and application of xylanase. In addition, some properties of the enzyme in crude culture filtrate produced on corn cobs are presented. The enzyme exhibited very satisfactory storage stability at 4–30°C either as crude culture filtrate or as spray- or freeze-dried powder. The crude enzyme was active over a broad range of pH and had activity optima at pH 6.5 and 70–75°C. The enzyme was almost thermostable (91–92%) at pH 6.5 and 9.0 after 41 h preincubation at 55°C and lost only 20–33% activity after 188 h. In contrast, it was much less thermostable at pH 5.0 and 11.0. Xylanases produced on different lignocellulosic substrates exhibited differences in thermostability at 55°C and pH 6.5. Correspondence to: J. Gomes  相似文献   

8.
Summary In an effort to improve the viability of acetone-butanol-ethanol fermentation by extractive fermentation, 63 organic solvents, including alkanes, alcohols, aldehydes, acids, and esters, were experimentally evaluated for biocompatibility with Clostridium acetobutylicum by observing gas evolution from cultures in contact with candidate solvents. Thirty-one of these solvents were further tested to determine their partition coefficient for butanol in fermentation medium. The biocompatible solvent with the highest partition coefficient for butanol (4.8), was poly(propylene glycol) 1200, which was selected for fermentation experiments. This is the highest partition coefficient reported to date for a biocompatible solvent. Extractive fermentations using concentrated feeds were observed to produce up to 58.6 g·l–1 acetone and butanol in 202 h, the equivalent of three control fermentations in a single run. Product yields (based on total solvent products and glucose consumed) of 0.234 g·g–1 to 0.311 g·g–1 and within run solvent productivities of 0.174 g·l–1·h–1 to 0.290 g·l–1·h–1 were consistentwith conventional fermentations reported in the literature. The extended run-time of the fermentation resulted in an overall improvement in productivity by reducing the fraction of between-run down-time for fermentor cleaning and sterilization.  相似文献   

9.
Summary The production of -linolenic acid (GLA) by the fungus Mucor rouxii CBS 416.77 was studied on low budget nitrogen and carbon sources, i.e. rape meal, cocos expeller and two types of yeast extract (nitrogen sources), and starch, starch hydrolysate, beet molasses and cocos expeller (carbon sources). As references, Difco yeast extract and glucose were used. In flask cultivations the three yeast extracts were fully interchangeable, while the Difco yeast extract (the most expensive of those tested) gave a higher productivity of GLA in fermentor cultures (14 mg·l–1·h–1). The yield of lipids and GLA were increased in the order yeast extract < rape meal < cocos expeller. Thus the amount of lipid increased from 0.56 to 2.8 g·l–1, and that of GLA from 0.15 to 0.33 g·l–1. Use of beet molasses or cocos expeller as carbon sources gave poor growth. Starch and starch hydrolysate resulted in better productivity of GLA than glucose (4.7 and 4.9 compared to 3.4 mg·l–1·h–1). Offsprint requests to: A.-M. Lindberg  相似文献   

10.
Effectiveness of SC2053 as a chemical hybridizing agent for winter wheat   总被引:1,自引:0,他引:1  
The use of chemical hybridizing agents (CHA) allows production of hybrid wheat seeds. We evaluated the effectiveness of a new CHA (SC2053) to induce male sterility on winter wheat in controlled growth conditions. CHA effectiveness was measured with the application of 4 doses (0–400–700–1000 g.ha–1) at 7 stages. These stages were defined by the length of the main stem spike (1–4–7–11–15–20–40 mm). At heading, individual ears were isolated with a greaseproof paper bag. The seeds formed were counted on treated and control ears. The spikes' sterility was calculated three weeks after flowering. The sterility of the main stem's spike reached 95% to 100% for application of 700 g.ha–1 and 1000 g.ha–1 for main stem spike length of 7 mm to 20 mm. The effects of ear tillering (5 tillers per plant) on CHA effectiveness were also investigated. We observed a significant delay of ear development between the main stem and tillers so that complete sterilities were not reached for each dose. Since tillering in field conditions rarely exceeds 3 ears per plant, CHA effectiveness was studied on plants bearing 3 ears. The mean sterility of the first 3 ears was close to 100% for applications with 700 g.ha–1 and 1000 g.ha–1 at stages from 11 mm to 20 mm of main stem spike length.  相似文献   

11.
The feasibility of using fish farm effluents was evaluated as a source of inorganic nutrients for mass production of marine diatoms. Batch cultures were conducted from May to July 1995 in 16-L outdoor rectangular tanks, homogenized by gentle aeration (0.2 L air L–1 h–1). The effluents from the two fish farms studied were both characterized by high concentrations of inorganic materials (NH4-N, PO4-;P, Si(OH)4-Si) and were shown to support production of marine diatoms. Moreover, periodic measurements of inorganic matter levels in the cultures showed that clearance was efficacious (90% in 3–5 days). Water purification efficiency and culture productivity were further increased through appropriate nutrient balancing. When effluents were limited in silicate, addition of Na2SiO3 induced a significant increase in both diatom biomass and nutrient removal efficiency. In this case, up to 720 000 cell mL–1 were produced dominated bySkeletonema costatum. By contrast, in effluents loaded with silicate, adjustment of the N:P:Si ratio by NH4-N and PO4-P supplementation then gave increased biomass production. In this case, the maximum cell density found was 450 000 cell mL–1, dominated byChaetoceros spp.Author for correspondence  相似文献   

12.
Arthrospira (Spirulina) platensis M2 was grown outdoors in 50-mm diameter tubular reactors under the climatic conditions of central Italy (Florence) from September to December 1995 and in March 1996. Except for September, the cultures temperature was regulated. Mean productivities of 0.83, 0.44 and 0.61 g dry wt L–1 d–1 were achieved in autumn (September–October), winter (November–December) and March, respectively. In autumn and winter, the photosynthetic efficiency of the cultures and the degree of correlation between productivity and solar irradiance were significantly greater than in summer. The effect of cell density and aeration rate on productivity was evaluated in September. The productivity of cultures operated at high supra-optimal population density was about 30% less at high aeration rate (1.0 LL–1 min–1), and 50% less at standard aeration rate (0.17 LL–1 min–1), than that of control cultures kept at optimal population density and standard aeration rate. The reduction of productivity in high-density cultures was due to lower daylight output rates and higher night biomass losses (the latter were particularly relevant under standard aeration conditions). The main factor limiting productivity in closed reactors during autumn was the night temperature. Heating the cultures during daylight hours on sunny days did not cause any significant increase of the yields, since under sunlight the unheated cultures also reached the optimal temperature for growth early in the morning. On cloudy days, the day-time temperature of the unheated cultures remained well below the optimum, however this had only a limited effect on productivity since algal growth was mainly light-limited.  相似文献   

13.
A two-stage process for enhanced ajmalicine production in elicited Catharanthus roseus cell cultures was developed in shake-flasks and a bioreactor. By using combined elicitor treatment of an Aspergillum niger mycelium and tetramethyl ammonium bromide, yields of ajmalicine were 48 mg l–1, 52 mg l–1 and 33 mg l–1, respectively in 500-ml flasks, 1000-ml flasks and a 20-l airlift bioreactor. The peroxidase and superoxide dismutase activities decreased in elicited cell cultures but catalase and lipoxygenase activities increased in these cultures. The combined elicitor treatment also caused a significant increase of malondialdehyde content in cell cultures.  相似文献   

14.
Concentrated chemostatic cultures of HeLa S3-1, KB, and HEp # 2 cells have been grown in a dialysis fermentor. Stationary cell concentrations of approximately 1.2 × 106 cells per ml have been produced at rates of 15 × 10-3 to 20 × 10-3 cells per hour for as long as 40 days. The dialysis fermentor appears to be useful in controlling the effects of nutrients on the growth rate of the cultures. Theoretical considerations are offered.  相似文献   

15.
Glucose-limited bean cells (Phaseolus vulgaris L.) were grown in a modified bacterial fermentor at a constant pH of 4.8. The cultures were kept in steady state at different specific growth rates varying from 0.00216 h–1 to 0.0106 h–1. Culture conditions are described that are needed to start a continuous culture. First, it was essential to use log-phase cells as starting material. Second, it was important to increase the dilution rate gradually, otherwise cells in the culture aggregated. Cells grown at the highest dilution rate employed contained twice as much protein per gram dry weight as cells grown at the lowest dilution rate. The composition of the cell walls also varied with the dilution rate in contrast to their relatively constant composition when grown in batch culture.  相似文献   

16.
An evaluation was made of the annual productivity of Spirulina (Arthrospira) and its ability to remove nutrients in outdoor raceways treating anaerobic effluents from pig wastewater under tropical conditions. The study was based at a pilot plant at La Mancha beach, State of Veracruz, Mexico. Batch or semi-continuous cultures were established at different seasons during four consecutive years. The protein content of the harvested biomass and the N and P removal from the ponds were also evaluated. Anaerobic effluents from digested pig waste were added in a proportion of 2% (v/v) to untreated sea-water diluted 1:4 with fresh water supplemented with 2 g L–1 sodium bicarbonate, at days 0, 3 and 5. A straight filament strain of Spirulina adapted to grow in this complex medium was utilized. A pH value 9.5 ± 0.2 was maintained. The productivity of batch cultures during summer 1998 was significantly more with a pond depth of 0.10 m than with a depth 0.065 m. The average productivity of semi-continuous cultures during summer 1999 was 14.4 g m–2 d–1 with a pond depth of 0.15 m and 15.1 g m–2 d–1 with a depth of 0.20 m. The average annual productivity for semi-continuous cultures operating with depths of 0.10 m for winter and 0.15 and 0.25 m for the rest of the year, was 11.8 g m–2 d–1. This is the highest value reported for a Spirulina cultivation system utilising sea-water. The average protein content of the semi-continuous cultures was 48.9% ash-free dry weight. NH4-N removal was in the range 84–96% and P removal in the range of 72–87%, depending on the depth of the culture and the season.  相似文献   

17.
Summary Activated sludge was successful in reducing the levels of dissolved organic carbon (DOC) in coal slurry wastewaters. DOC removal by the activated sludge ranged from 61% to 97% with a large percentage (21–41%) of this DOC being completely metabolized to CO2. Second order kinetic constants (k 2) developed for DOC removal ranged from 1.39·10–4 to 2.30·10–1 liter·day–1·(mg of sludge)–1, providing evidence that biological treatment was an effective mechanism for reducing the pollution potential of the slurry wastewaters. After treatment with activated sludge a residual DOC remained in the wastewater and data from ultrafiltration studies indicated that this residual carbon was of MW>1000. The activated sludge preferentially removed the lower (MW<1000) molecular weight compounds and the higher molecular weight DOC was more resistant to biological attack. However, extended acclimation (greater than 1 month) enabled the activated sludge to remove the higher molecular weight DOC from the slurry wastewaters.  相似文献   

18.
Fed-batch ethanol fermentation tests of sugar cane blackstrap molasses were carried out at 32° C and ph 4.5–5.0, using pressed yeast as inoculum, and with no air supply. Two values of the fermentor filling-up time were adopted: 5 h and 7 h. The feeding rates obeyed equation F=F0·K·t, with K equal to 0.0, 0.2, 0.4, 0.6 and 0.8 h–1. The average yeast yields and the average yeast productivities increased up to 33% and 45%, respectively, while the ethanol yield (average=76%; standard deviation=4%) was practically unaffected when K increased from 0 to 0.8 h–1. Correspondence to: E. Aquarone  相似文献   

19.
A coupled fermentation-pervaporation process was operated continuously with on-line mass spectrometric gas analysis monitoring of product accumulation on both the upstream and the downstream sides of the membrane. Efficient coupling of the fermentation with pervaporation was attained when a steady state of ethanol production and removal was achieved with whey permeate containing high concentrations of lactose (>8%) or by controlled lactose additions that also compensated for loss of liquid due to pervaporation. The combined system consists of a tubular membrane pervaporation module, directly connected to a stirred fermentor to form one circulation loop, kept at 38°C, with both units operating under computer control. Mass spectrometric gas analysis of the CO2 gas evolved in the fermentor and the ethanol and water in the pervaporate on the downstream side of the membrane enabled us to follow the production of ethanol and its simultaneous removal. Membrane selectivity was calculated on-line and served to monitor the functioning of the membrane. Batch-wise-operated fermentation-pervaporation with Candida pseudotropicalis IP-513 yielded over 120 gl–1 of concentrated ethanol solution using supplemented whey permeate containing 16% lactose. A steady state lasting for about 20 h was achieved with ethanol productivity of 20 g h–1 (approx. 4 g l–1 h–1). Membrane selectivity was over 8. Controlled feeding of concentrated lactose suspension in the whey permeate (350 g l–1) resulted in the continuous collection of 120–140 g l–1 of ethanol pervaporate for 5 days, by which time salt accumulation hampered the fermentation. Medium refreshment restored the fermentative activity of the yeast cells and further extended the coupled process to over 9 days (200 h), when reversible membrane fouling occurred. The membrane module was exchanged and the combined process restarted. Correspondence to: Y. Shabtai  相似文献   

20.
Addition of betaine to the inductionmedium significantly enhanced the rapid formation ofsomatic embryos directly without callusing from maturefresh seeds of tea within two weeks of cultureinitiation. The induction response was furtherenhanced when ABA (7.5 mgl–1) was co-supplementedwith betaine in the induction medium. The rate ofinduction of somatic embryogenesis increased linearlywith external betaine concentration. Globular somaticembryo-like structures (embryoids) were observed in 4-week old cultures when inoculated on the inductionmedium without ABA and betaine. The positive effectof ABA on the induction process was found to bedependent on the presence of betaine in the medium. ABA alone in the medium could not bring the inductionstimulus in the explants; on the contrary, it provedinhibitory. The optimum response of ABA was observedwhen the medium was supplemented with 500 to1000 mgl–1 of betaine. Primary somatic embryosobtained in the presence of ABA and betaine were ableto produce secondary embryos. A conversion rate of15–20% was achieved upon transfer of somatic embryosof size 3–5 mm in diameter to the basal medium consistof half strength of macro nutrients, full strength ofmicro nutrients and vitamins of MS. Medium wasfurther supplemented with 100 mg l–1 each ofadenine hemisulfate sulphate and L-glutamine, 30 gl–1 sucrose, gelled with 7 gl–1 bitek agar. The plantlets regenerated by this procedure did notshow any visible abnormalities. This report for thefirst time details the potential use of betaine inplant tissue culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号