首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Secretory and motility reflexes are evoked by physiological stimuli in the isolated rat distal colon, which is therefore expected to contain intrinsic primary afferent (sensory) neurons. Dogiel type II neurons (putative intrinsic primary afferent neurons) exhibit several long processes emerging from large oval or round cell bodies. This study has examined the immunohistochemical characteristics of type II neurons in the submucosal plexus of rat distal colons by using whole-mount preparations. Neuronal cell bodies positive for both substance P (SP) and calretinin have been observed in colchicine-treated rats. Neurofilament 200 immunostaining has confirmed the type II morphology of SP-positive neurons. Moreover, all submucosal type II neurons identified by neurofilament 200 immunoreactivity are positive for calretinin. Calcitonin gene-related peptide (CGRP)-positive neurons in the submucosal plexus are distinct from type II neurons because they are negative for calretinin and have smaller cell bodies than the SP-positive submucosal type II neurons. Most (73%) of the submucosal neurons including type II neurons exhibit immunoreactivity for the neurokinin-1 receptor (NK1R), a receptor for SP, on the surface of cell bodies. Immunoreactivity for the EP3 receptor (EP3R), a receptor for prostaglandin E2, has been detected in 51% of submucosal neurons including type II neurons. Thus, submucosal type II neurons in the rat distal colon are immunopositive for SP/calretinin but immunonegative for CGRP. SP released from submucosal type II neurons probably acts via NK1Rs on type II and non-type II submucosal neurons to mediate intrinsic reflexes. EP3R-positive submucosal type II neurons may be potential targets of prostaglandin E2.  相似文献   

2.
The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.  相似文献   

3.
用酶组织化学和免疫组织化学双标技术,观察了正常SD大鼠基底前脑内侧隔核(MS)、斜角带垂直支(VDB)和水平支(HDB)中NOS阳性神经元的形态和分布及NOS与胆碱能神经元标志物ChAT、NGF受体(NGF-R)和AChE之间的共存关系。结果发现,MS、VDB和HDB的头端NOS阳性神经元较多、胞体较大、突起多,尾端NOS阳性神经元数目较少、胞体较小、突起少而短。NOS+ChAT双标神经元占NOS阳性神经元总数的90%,占ChAT阳性神经元总数的39%;NOS+NGF-R双标神经元占NOS阳性神经元总数的83%,占NGF-R阳性神经元总数的40%;NOS+AChE双标神经元占NOS阳性神经元总数的96%,占AChE阳性神经元总数的39%。这些结果为研究Alzheimer'sdisease病理过程中基底前脑隔区胆碱能神经元退变与NO的关系提供了形态学依据。  相似文献   

4.
Summary The distributions within the coeliac ganglion of different chemically coded subgroups of noradrenaline neurons, and the relationships between these neurons and nerve fibres projecting to the ganglion from the intestine, have been assessed quantitatively by use of an immunohistochemical double-staining method. Noradrenaline (NA) neurons made up 99% of all cell bodies. Of these, 21% were also reactive for somatostatin (NA/SOM neurons), 53% were also reactive for NPY (NA/NPY neurons), and 26% were not reactive for either peptide. NA neurons without reactivity for any of the peptides whose localization was tested have been designated NA/-. A small percentage, about 1%, of neurons were reactive for both NPY and SOM. The three major types of NA neurons were arranged in clumps or ribbons throughout the ganglia, with a tendency for NA/SOM neurons to be medial and NA/NPY neurons to be lateral in the ganglia. A small group of neurons (<1%) encoded with dynorphin, NPY and vasoactive intestinal peptide (VIP) was encountered. VIP-immunoreactive nerve terminals, projecting to the ganglion from cell bodies in the intestine, ended around NA/SOM and NA/neurons but not around NA/NPY neurons. Thus, the VIP axons from the intestine end selectively around neurons that modify intestinal function (NA/SOM and NA/-neurons) but not around neurons, the terminals of which supply blood vessels (NA/NPY neurons).  相似文献   

5.
ABSTRACT: The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies are reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP , ADP1 and ADP2. Using pharmacological approaches, we found that LI neurons receive both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.  相似文献   

6.
Gamma-aminobutyric acid (GABA) uptake and acetylcholinesterase (AChE) content were demonstrated concurrently in cortical neurons grown in tissue culture. Positive reactions either for GABA uptake or for AChE content were encountered in pyramidal and stellate, as well as spindle-shaped neurons. Neither reaction was confined to a specific morphological subtype. Nearly half the neurons were negative for either reaction. Most of the remaining neurons were positive only for GABA or only for AChE. However, a subpopulation of neurons showed not only a high AChE content, but also an avid GABA uptake. Thus, four types of neurons could be identified on the basis of these two reactions. The high AChE content in some of the cortical neurons that also showed GABA uptake indicates that there are at least two distinct types of GABAergic neurons.  相似文献   

7.
The finding of orexin/hypocretin deficiency in narcolepsy patients suggests that this hypothalamic neuropeptide plays a crucial role in regulating sleep/wakefulness states. However, very little is known about the synaptic input of orexin/hypocretin-producing neurons (orexin neurons). We applied a transgenic method to map upstream neuronal populations that have synaptic connections to orexin neurons and revealed that orexin neurons receive input from several brain areas. These include the amygdala, basal forebrain cholinergic neurons, GABAergic neurons in the preoptic area, and serotonergic neurons in the median/paramedian raphe nuclei. Monoamine-containing groups that are innervated by orexin neurons do not receive reciprocal connections, while cholinergic neurons in the basal forebrain have reciprocal connections, which might be important for consolidating wakefulness. Electrophysiological study showed that carbachol excites almost one-third of orexin neurons and inhibits a small population of orexin neurons. These neuroanatomical findings provide important insights into the neural pathways that regulate sleep/wakefulness states.  相似文献   

8.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

9.
The preoptic area contains thermosensitive neurons, thought to be important in thermoregulation, and steroid-sensitive neurons, thought to be involved in reproduction. The preoptic area also contains osmosensitive neurons, considered important in water balance, and glucosensitive neurons, thought to function in the regulation of glucose. If these various neurons belong to separate populations, one might predict that most osmosensitive, glucosensitive, and steroid-sensitive neurons constitute the population of temperature-insensitive neurons rather than thermosensitive neurons. To test this hypothesis, single unit activity was recorded in preoptic tissue slices prepared from male rats. In addition to temperature changes, neuronal responses were examined with various perfusion media containing testosterone or estradiol (30 pg/mL), low glucose (1.0 mM), and increased osmotic pressure (309 mosmol/kg). It was found that the steroid-sensitive, osmosensitive, and glucosensitive neurons were not confined to the temperature-insensitive neurons; but that nearly half of the thermosensitive neurons responded to these nonthermal stimuli. This lack of specificity was also observed between osmosensitive and glucosensitive neurons; however, most of the steroid-sensitive neurons were highly specific for either estradiol or testosterone. Although these findings do not suggest a strong functional specificity for preoptic neurons, they do support studies emphasizing interactions between regulatory systems.  相似文献   

10.
Leptin acts on leptin receptor (LepRb)-expressing neurons throughout the brain, but the roles for many populations of LepRb neurons in modulating energy balance and behavior remain unclear. We found that the majority of LepRb neurons in the lateral hypothalamic area (LHA) contain neurotensin (Nts). To investigate the physiologic role for leptin action via these LepRb(Nts) neurons, we generated mice null for LepRb specifically in Nts neurons (Nts-LepRbKO mice). Nts-LepRbKO mice demonstrate early-onset obesity, modestly increased feeding, and decreased locomotor activity. Furthermore, consistent with the connection of LepRb(Nts) neurons with local orexin (OX) neurons and the ventral tegmental area (VTA), Nts-LepRbKO mice exhibit altered regulation of OX neurons and the mesolimbic DA system. Thus, LHA LepRb(Nts) neurons mediate physiologic leptin action on OX neurons and the mesolimbic DA system, and contribute importantly to the control of energy balance.  相似文献   

11.
The aim of this study was to determine the morphology and position of the excitatory and inhibitory motor neurons to the human gastric sling and clasp fibers. Motor neurons were identified by retrograde staining with 1,1'-didodecyl 3,3,3',3'-indocarbocyanine perchlorate (DiI), and choline acetyltransferase (ChAT) or nitric oxide synthase (NOS) immunoreactivity was then determined in these motor neurons. In the sling preparations, 46% of the DiI-stained cells were aboral motor neurons, 43% were local motor neurons, and only 10% were descending motor neurons. Overall, 58% were immunoreactive for ChAT, and 36% for NOS (P = 0.042). Sixty-two percent of local, and 66% of aboral DiI-stained motor neurons were immunoreactive for ChAT. In the clasp preparations, 52% of the DiI-stained cells were descending motor neurons, 45% were local motor neurons, and only 3% were aboral neurons. Overall, 31% were immunoreactive for ChAT and 65% for NOS (P = 0.039). Eighty-five percent of the DiI-stained descending motor neurons were immunoreactive for NOS. All of the cells that were labeled adequately had a single axon and a number of filamentous or flattened lobular dendrites, and fitted into the broad category of Dogiel type I neurons. In conclusion, the majority of the motor neurons to the sling fibers were ChAT-positive excitatory neurons from the myenteric plexus of the stomach and the local region, and to the clasp were predominantly NOS-positive inhibitory neurons from the esophagus.  相似文献   

12.
Enkephalinergic (ENKergic) neurons have been proposed to play crucial roles in pain modulation in the trigeminal subnucleus caudalis (Vc). To assist an advance in the research of ENKergic neurons, here we used preproenkephalin-green fluorescent protein (PPE-GFP) transgenic mice, in which all ENKergic neurons were fluorescent. We first performed fluorescent in situ hybridization combined with immunofluorescent histochemistry to confirm the specificity of this transgenic mouse and its advantages in showing ENKergic neurons in the Vc. Then based on this useful transgenic mouse, we examined the phenotypic diversity of PPE-GFP neurons by immunostaining for several markers that characterize ENKergic neuron subtypes. About 25.9±1.9% of GFP-positive neurons were regarded as immunoreactive for glutamic acid decarboxylase (GAD)(67) mRNA and 14.7±1.4% of GFP-positive neurons were positive for γ-aminobutyric acid. The proportions of calbindin-, calretinin-positive cells among the ENKergic neurons were 8.4±1.2% and 7.3±1.7%, respectively. Only 1.1±0.1% of GFP-positive neurons colocalized with parvalbumin and no GFP-positive neurons were found to co-express neuronal nitric oxide synthase. We then injected retrograde tracer into the thalamic regions and observed that a small number of ENKergic neurons in the Vc were retrogradely labeled with the tracer. The present results provide a detailed morphological evidence of the neurochemical features of ENKergic neurons. These results have broad implications for understanding the functional roles of ENKergic neurotransmission in the Vc.  相似文献   

13.
Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut   总被引:3,自引:3,他引:0  
In this study, we characterized human myenteric neurons co-immunoreactive for neuronal nitric oxide synthase (nNOS) and vasoactive intestinal peptide (VIP) by their morphology and their proportion as related to the putative entire myenteric neuronal population. Nine wholemounts (small and large intestinal samples) from nine patients were triple-stained for VIP, neurofilaments (NF) and nNOS. Most neurons immunoreactive for all three markers displayed radially emanating, partly branching dendrites with spiny endings. These neurons were called spiny neurons. The spiny character of their dendrites was more pronounced in the small intestinal specimens and differed markedly from enkephalinergic stubby neurons described earlier. Exclusively in the duodenum, some neurons displayed prominent main dendrites with spiny side branches. Of the axons which could be followed from the ganglion of origin within primary strands of the myenteric plexus beyond the next ganglion (70 out of 140 traced neurons), 94.3% run anally and 5.7% orally. Very few neurons reactive for both VIP and nNOS could not be morphologically classified due to weak or absent NF-immunoreactivity. Another six wholemounts were triple-stained for VIP, nNOS and Hu proteins (HU). The proportion of VIP/nNOS-coreactive neurons in relation to the number of HU-reactive neurons was between 5.8 and 11.5% in the small and between 10.6 and 17.5% in the large intestinal specimens. We conclude that human myenteric spiny neurons co-immunoreactive for VIP and nNOS represent either inhibitory motor or descending interneurons.  相似文献   

14.
Pyramidal neurons are the principal neurons of the neocortex and their excitatory impact on other pyramidal neurons and interneurons is central to neocortical dynamics. A fundamental principal that has emerged which governs pyramidal neuron excitation of other neurons in the local circuitry of neocortical columns is differential anatomical and physiological properties of the synaptic innervation via the same axon depending on the type of neuron targeted. In this study we derive anatomical principles for divergent innervation of pyramidal neurons of the same type within the local microcircuit. We also review data providing circumstantial and direct evidence for differential synaptic transmission via the same axon from neocortical pyramidal neurons and derive some principles for differential synaptic innervation of pyramidal neurons of the same type, of pyramidal neurons and interneurons and of different types of interneurons. We conclude that differential anatomical and physiological differentiation is a fundamental property of glutamatergic axons of pyramidal neurons in the neocortex.  相似文献   

15.
It was hypothesised that P2X(3) receptors, predominantly labelling spinal and cranial sensory ganglionic neurons, are also expressed in intrinsic sensory enteric neurons, although direct evidence is lacking. The aim of this study was to localise P2X(3) receptors in the enteric nervous system of the guinea-pig ileum, and to neurochemically identify the P2X(3)-expressing neurons. In the submucous plexus, cholinergic neurons expressing calretinin (CRT), were immunostained for P2X(3). These neurons made up about 12% of the submucous neurons. In the myenteric plexus, approximately 36% of the neurons expressed P2X(3). Half of the latter neurons were immunoreactive for CRT, whereas about 20% were immunoreactive for nitric oxide synthase (NOS). Based on earlier neurochemical analysis of enteric neurons in the guinea-pig, the myenteric neurons exhibiting P2X(3)/CRT immunoreactivity were identified as longitudinal muscle motor neurons, and those expressing P2X(3)/NOS immunoreactivity as short inhibitory circular muscle motor neurons. In both plexuses, no colocalisation was observed between P2X(3) and calbindin, a marker for intrinsic sensory neurons. Multiple staining with antisera raised against somatostatin, neuropeptide Y, substance P or neurofilament protein did not reveal any costaining. It can be concluded that in the guinea-pig ileum, intrinsic sensory neurons do not express P2X(3) receptors. However, this does not negate the possibility that extrinsic sensory nerves expressing P2X(3) are involved in a purinergic mechanosensory transduction pathway as demonstrated in other organs.  相似文献   

16.
Lu  X.R.  Ong  W.Y.  Mackie  K. 《Brain Cell Biology》1999,28(12):1045-1051
The distribution of the CB1 cannabinoid receptor was studied in the monkey basal forebrain by immunocytochemistry and electron microscopy, using an antibody to the CB1 brain cannabinoid receptor. Large numbers of labelled neurons were observed in the medial septum, nucleus of the diagonal band, and the nucleus basalis of Meynert. The labelled neurons had dimensions similar to those of cholinergic neurons and were larger than those of GABAergic neurons. Double immunolabelling with an antibody to the synthetic enzyme for acetylcholine, choline acetyl transferase (ChAT) showed that CB1-positive neurons were also positive for ChAT, whilst electron microscopy confirmed that CB1-labelled neurons contained lipofuscin granules and dense clusters of rough endoplasmic reticulum, characteristic of cholinergic neurons. The dense labelling of cholinergic neurons for CB1 is interesting from the standpoint of neuroprotection. The CB1 receptor has been shown to couple in an inhibitory manner to voltage dependent calcium channels, and the dense labelling of CB1 in cholinergic neurons would therefore suggest that CB1 receptors could be important in limiting calcium influx through voltage dependent calcium channels in these neurons. This could serve to limit intracellular calcium concentrations, and consequent calcium mediated injury, in these neurons.  相似文献   

17.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea.  相似文献   

18.
In experiments on the preparation of a frog perfused brain, using recording of intracellular potentials the vestibulospinal neurons were identified on the basis of excitatory postsynaptic potentials evoked by the stimulation of the ipsilateral vestibular nerve and antidromic activation from the stimulation of the cervical and lumbar enlargements of the spinal cord. The average conduction velocity determined for axons of C neurons was 10.67 m/s and for L neurons 15.84 m/s. The ratio of C and L neurons over the vestibular nuclear complex was very stimular to each other: 52% C neurons and 48% L neurons. The majority of both types of neurons were localized in the lateral vestibular nucleus (58.6%), to the lesser extent in the descending vestibular nucleus (30.7%) and very little in the medial vestibular nucleus (10.6%). Fast and slow cells were detected among the vestibulospinal neurons. The fast neurons of L cells did not prevail greatly over the slow ones, whereas the slow neurons of C cells prevailed comparatively largely over the fast neurons. Thus, it became possible to reconstruct spatial distribution of the identified vestibulospinal neurons. The results of spatial distribution of C and L vestibulospinal neurons in the frogs failed to conform to definite somatotopy, which is characteristic for mammalian vestibular nuclei. C and L neurons in the frog's vestibular nuclei as a source of vestibulospinal fibres, are scattered separately or more frequently in groups, so that they establish a "patch-like" somatotopy and do not form a distinctly designed fields as in mammals.  相似文献   

19.
Cholinergic neurons have been revealed in the enteric nervous system by functional and biochemical studies but not by antibodies that provide excellent localisation of the synthesising enzyme, choline acetyltransferase (ChAT), in the central nervous system. In order to determine whether a newly described peripheral form of ChAT (pChAT) is a ChAT enzyme of enteric neurons, we have compared pChAT distribution with that of the common form of ChAT, cChAT, by quantitative analysis of the co-localisation of pChAT and cChAT with other neurochemical markers in enteric neurons of the guinea-pig ileum. We found classes of neuron with strong pChAT immunoreactivity (IR) and others with strong cChAT-IR. In myenteric ganglia, strong pChAT-IR was in calbindin-positive intrinsic primary afferent neurons (IPANs), whereas cChAT-IR of these neurons was weak. Calretinin neurons were immunoreactive for cChAT, but not pChAT. Only 4% of nitric oxide synthase (NOS) neurons (possibly interneurons) were pChAT-immunoreactive, similar to observations with cChAT. NOS-immunoreactive inhibitory motor neurons stained with neither cChAT nor pChAT antisera. In the submucosal ganglia, pChAT-IR was strongly expressed in IPANs (identified by cytoplasmic staining for the neuronal nuclear marker, NeuN) and in neuropeptide Y (NPY)-immunoreactive secretomotor neurons, but not in calretinin-immunoreactive neurons. cChAT-IR occurred weakly in submucosal IPANs and also labelled NPY- and calretinin-immunoreactive neurons. Submucosal vasoactive-intestinal-peptide-immunoreactive neurons (non-cholinergic secretomotor neurons) were not reactive for either form of ChAT.  相似文献   

20.
Drosophila mushroom bodies (MB) are bilaterally symmetric multilobed brain structures required for olfactory memory. Previous studies suggested that neurotransmission from MB neurons is only required for memory retrieval. Our unexpected observation that Dorsal Paired Medial (DPM) neurons, which project only to MB neurons, are required during memory storage but not during acquisition or retrieval, led us to revisit the role of MB neurons in memory processing. We show that neurotransmission from the alpha'beta' subset of MB neurons is required to acquire and stabilize aversive and appetitive odor memory, but is dispensable during memory retrieval. In contrast, neurotransmission from MB alphabeta neurons is only required for memory retrieval. These data suggest a dynamic requirement for the different subsets of MB neurons in memory and are consistent with the notion that recurrent activity in an MB alpha'beta' neuron-DPM neuron loop is required to stabilize memories formed in the MB alphabeta neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号