首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developing RNase P ribozymes for gene-targeting and antiviral therapy   总被引:5,自引:0,他引:5  
RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5' end that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR-ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme-based technology as a promising gene targeting approach for basic research and clinical therapeutic application.  相似文献   

2.
RNase P ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural ptRNA substrate. When covalently linked with a guide sequence, the ribozyme can function as a sequence-specific endonuclease and cleave any target RNA sequences that base pair with the guide sequence. Using a site-directed ultraviolet (UV) cross-linking approach, we have mapped the regions of the ribozyme that are in close proximity to a substrate that contains the mRNA sequence encoding thymidine kinase of human herpes simplex virus 1. Our data suggest that the cleavage site of the mRNA substrate is positioned at the same regions of the ribozyme that bind to the cleavage site of a ptRNA. The mRNA-binding domains include regions that interact with the acceptor stem and T-stem and in addition, regions that are unique and not in close contact with a ptRNA. Identification of the mRNA-binding site provides a foundation to study how RNase P ribozymes achieve their sequence specificity and facilitates the development of gene-targeting ribozymes.  相似文献   

3.
Hsu AW  Kilani AF  Liou K  Lee J  Liu F 《Nucleic acids research》2000,28(16):3105-3116
RNase P from Escherichia coli is a tRNA-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1, can cleave a herpes simplex virus 1 mRNA efficiently in vitro and inhibit its expression effectively in viral-infected cells. In this study, the effects of C5 on the interactions between a M1GS ribozyme and a model mRNA substrate were investigated by site-specific UV crosslink mapping. In the presence of the protein cofactor, the ribozyme regions crosslinked to the substrate sequence 3′ immediately to the cleavage site were similar to those found in the absence of C5. Meanwhile, some of the ribozyme regions (e.g. P12 and J11/12) that were crosslinked to the leader sequence 5′ immediately to the cleavage site in the presence of C5 were different from those regions (e.g. P3 and P4) found in the absence of the protein cofactor and were not among those that are believed to interact with a tRNA. Understanding how C5 affects the specific interactions between the ribozyme and its target mRNA may facilitate the development of gene-targeting ribozymes that function effectively in vivo, in the presence of cellular proteins.  相似文献   

4.
T Pan  M Jakacka 《The EMBO journal》1996,15(9):2249-2255
The ribozyme from Bacillus subtilis RNase P (P RNA) recognizes an RNA structure consisting of the acceptor stem and the T stem-loop of tRNA substrates. An in vitro selection experiment was carried out to obtain potential RNA substrates that may interact with the P RNA differently from the tRNA substrate. Using a P RNA-derived ribozyme that contains most, if not all, of the structural elements thought to be involved in active site formation of P RNA, but lacks the putative binding site for the T stem-loop of tRNA, a single RNA substrate was isolated after nine rounds of selection. This RNA is a competent substrate for the ribozyme used in selection as well as for the full-length P RNA. Biochemical characterization shows that this selected substrate interacts at a different site compared with the tRNA substrate. The selection experiment also identified a self-cleaving RNA seemingly different from other known ribozymes. These results indicate that a biological ribozyme can contain different binding sites for different RNA substrates. This alternate binding site model suggests a simple mechanism for evolving existing ribozymes to recognize RNA substrates of diverse structures.  相似文献   

5.
HCMV UL97 mRNA序列特异性M1GS的构建及其体外切割活性研究   总被引:4,自引:0,他引:4  
HCMV UL97基因编码一种蛋白激酶,该酶参与调控病毒DNA的复制和衣壳的形成,且序列异常保守,可作为抗HCMV治疗的重要靶位。基于HCMV UL97 mRNA T3位点附近的序列,设计一段与该位点互补的引导序列(Guide Sequence,GS),并将其与大肠杆菌核酶P催化亚基(M1 RNA)的3’末端共价连接,构建了一种序列特异性的M1GS(M1-T3)。体外实验证实,所构建的M1-T3可与UL97 mRNA的T3位点特异性结合并产生有效的切割作用。进一步研究M1-T3的结构与其对底物片段靶向切割活性的关系,结果发现在M1 RNA与GS之间增加一段88核苷酸桥连序列的M1-T3(即M1-T3’),其靶向切割活性大大增强。此外,去除M1-T3 3’末端的CCA序列,其靶向切割活性将基本丧失。上述结果表明,这段桥连序列和3’末端的CCA序列是M1-T3重要的结构元件。这不仅有助于阐明M1GS与其底物的相互作用机制,同时也为进一步评价M1-T3在体内对UL97基因表达及病毒复制的抑制活性奠定了基础。  相似文献   

6.
Kim K  Liu F 《Biochimica et biophysica acta》2007,1769(11-12):603-612
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.  相似文献   

7.
L Odell  V Huang  M Jakacka    T Pan 《Nucleic acids research》1998,26(16):3717-3723
The ribozyme from bacterial ribonuclease P recognizes two structural modules in a tRNA substrate: the T stem-loop and the acceptor stem. These two modules are connected through a helical linker. The T stem-loop binds at a surface confined in a folding domain away from the active site. Substrates for the Bacillus subtilis RNase P RNA were previously selected in vitro that are shown to bind comparably well or better than a tRNA substrate. Chemical modification of P RNA-substrate complexes with dimethylsulfate and kethoxal was performed to determine how the P RNA recognizes three in vitro selected substrates. All three substrates bind at the surface known to interact with the T stem-loop of tRNA. Similar to a tRNA, the secondary structure of these substrates contains a helix around the cleavage site and a hairpin loop at the corresponding position of the T stem-loop. Unlike a tRNA, these two structural modules are connected through a non-helical linker. The two structural modules in the tRNA and in the selected substrates bind to two different domains in P RNA. The properties of substrate recognition exhibited by this ribozyme may be exploited to isolate new ribozyme-substrate pairs with interactive structural modules.  相似文献   

8.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

9.
The cleavage specificities of the RNase P holoenzymes from Escherichia coli and the yeast Schizosaccharomyces pombe and of the catalytic M1 RNA from E. coli were analyzed in 5'-processing experiments using a yeast serine pre-tRNA with mutations in both flanking sequences. The template DNAs were obtained by enzymatic reactions in vitro and transcribed with phage SP6 or T7 RNA polymerase. The various mutations did not alter the cleavage specificity of the yeast RNase P holoenzyme; cleavage always occurred predominantly at position G + 1, generating the typical seven base-pair acceptor stem. In contrast, the specificity of the prokaryotic RNase P activities, i.e. the catalytic M1 RNA and the RNase P holoenzyme from E. coli, was influenced by some of the mutated pre-tRNA substrates, which resulted in an unusual cleavage pattern, generating extended acceptor stems. The bases G - 1 and C + 73, forming the eighth base pair in these extended acceptor stems, were an important motif in promoting the unusual cleavage pattern. It was found only in some natural pre-tRNAs, including tRNA(SeCys) from E. coli, and tRNAs(His) from bacteria and chloroplasts. Also, the corresponding mature tRNAs in vivo contain an eight base pair acceptor stem. The presence of the CCA sequence at the 3' end of the tRNA moiety is known to enhance the cleavage efficiency with the catalytic M1 RNA. Surprisingly, the presence or absence of this sequence in two of our substrate mutants drastically altered the cleavage specificity of M1 RNA and of the E. coli holoenzyme, respectively. Possible reasons for the different cleavage specificities of the enzymes, the influence of sequence alterations and the importance of stacking forces in the acceptor stems are discussed.  相似文献   

10.
Seven sequence-specific ribozymes (M1GS RNAs) derived in vitro from the catalytic RNA subunit of Escherichia coli RNase P and targeting the mRNAs transcribed by the UL54 gene encoding the DNA polymerase of human cytomegalovirus were screened from 11 ribozymes that were designed based on four rules: (1) the NCCA-3′ terminal must be unpaired with the substrate; (2) the guide sequence (GS) must be at least 12 nt in length; (3) the eighth nucleotide must be U, counting from the site-1; and (4) around the cleavage site, the sites -1/ 1/ 2 must be U/G/C or C/G/C. Further investigation of the factors affecting the cleavage effect and the optimal ratio for M1GS/substrate was carried out. It was determined that the optimal ratio for M1GS/substrate was 2:1 and too much M1GS led to substrate degrading. As indicated above, several M1GS that cleaved HCMV UL54 RNA segments in vitro were successfully designed and constructed.Our studies support the use of ribozyme M1GS as antisense molecules to silence HCMV mRNA in vitro, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.  相似文献   

11.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

12.
引导序列(Guide Sequences,GSs)是与mRNA靶序列互补并引导RNase P切割的小RNA片段。设计与人巨细胞病毒HCMV(Human Cytomegalovirus,HCMV)ul54基因D片段mRNA序列互补的GS,将其共价结合到大肠杆菌来源RNase P催化核心M1 RNA,构建成T7-M1GS核酶。通过对ul54基因D片段转录产物体外切割实验和将T7-M1GS构建在含有U6启动子的逆转录病毒载体,与构建在真核载体pEGFP-N1的ul54基因D片段共转染人宫颈癌细胞系HeLa的体内切割实验,证实该核酶具备对ul54基因D片段mRNA的特异切割能力,为利用核酶治疗HCMV感染提供实验基础。  相似文献   

13.
外部引导序列(EGSs)是mRNA靶序列互补并引导RNaseP切割的小RNA片段。我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus)UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNaseP催化核心M1RNA构建成M1GS核酶。通过对UL54基因亚克降片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂。  相似文献   

14.
对HCMV UL54 mRNA 片段特异性切割的M1GS构建   总被引:4,自引:0,他引:4  
人巨细胞病毒是一种DNA病毒,在人群中一般呈亚临床感染和潜伏感染。为研究病毒基因沉默工具和抗病毒制剂,以人巨细胞病毒UL54基因mRNA序列设计互补的外部引导序列,共价结合到大肠杆菌来源RNaseP催化核心M1RNA上,从而构建成M1GS-T6核酶。通过对DNA聚合酶UL54基因亚克隆片段转录产物体外切割研究,证实该核酶具备对UL54mRNA片段的特异切割能力。  相似文献   

15.
针对HCV基因组中较为保守的区域-5'UTR,设计一段GS引导序列,并与大肠杆菌RNase P的催化亚基-M1RNA的3'末端共价结合,构建序列特异性M1GS核酶-M1GS-HCV/C20。体外实验证实,所构建的人工核酶对HCV 5'UTR具有明显的靶向切割活性,且这种切割发生于靶序列的特定位点。本研究将为进一步阐明该核酶在胞内的活性、乃至动物模型内评价其抗病毒效果提供实验材料,从而为新型抗HCV药物及反义基因治疗的研究奠定基础。  相似文献   

16.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

17.
External guide sequences (EGSs) are small RNA molecules that bind to a target mRNA, form a complex resembling the structure of a tRNA, and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. An in vitro selection procedure was used to select EGSs that direct human RNase P to cleave the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1. One of the selected EGSs, TK17, was at least 35 times more active in directing RNase P in cleaving TK mRNA in vitro than the EGS derived from a natural tRNA sequence. TK17, when in complex with the TK mRNA sequence, resembles a portion of tRNA structure and exhibits an enhanced binding affinity to the target mRNA. Moreover, a reduction of 95 and 50% in the TK expression was found in herpes simplex virus 1-infected cells that expressed the selected EGS and the EGS derived from the natural tRNA sequence, respectively. Our study provides direct evidence that EGS molecules isolated by the selection procedure are effective in tissue culture. These results also demonstrate the potential for using the selection procedure as a general approach for the generation of highly effective EGSs for gene-targeting application.  相似文献   

18.
A synthetic tRNA precursor analog containing the structural elements of Escherichia coli tRNA(Phe) was characterized as a substrate for E. coli ribonuclease P and for M1 RNA, the catalytic RNA subunit. Processing of the synthetic precursor exhibited a Mg2+ dependence quite similar to that of natural tRNA precursors such as E. coli tRNA(Tyr) precursor. It was found that Sr2+, Ca2+, and Ba2+ ions promoted processing of the dimeric precursor at Mg2+ concentrations otherwise insufficient to support processing; very similar behavior was noted for E. coli tRNA(Tyr). As noted previously for natural tRNA precursors, the absence of the 3'-terminal CA sequence in the synthetic precursor diminished the facility of processing of this substrate by RNase P and M1 RNA. A study of the Mg2+ dependence of processing of the synthetic tRNA dimeric substrate radiolabeled between C75 and A76 provided unequivocal evidence for an alteration in the actual site of processing by E. coli RNase P as a function of Mg2+ concentration. This property was subsequently demonstrated to obtain (Carter, B. J., Vold, B.S., and Hecht, S. M. (1990) J. Biol. Chem. 265, 7100-7103) for a mutant Bacillus subtilis tRNAHis precursor containing a potential A-C base pair at the end of the acceptor stem.  相似文献   

19.
Kim K  Trang P  Umamoto S  Hai R  Liu F 《Nucleic acids research》2004,32(11):3427-3434
By linking a guide sequence to the catalytic RNA subunit of RNase P (M1 RNA), we constructed a functional ribozyme (M1GS RNA) that targets the overlapping mRNA region of two human cytomegalovirus (HCMV) capsid proteins, the capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation. The ribozyme efficiently cleaved the target mRNA sequence in vitro. Moreover, a reduction of >85% in the expression of CSP and assemblin and a reduction of 4000-fold in viral growth were observed in the HCMV-infected cells that expressed the functional ribozyme. In contrast, there was no significant reduction in viral gene expression and growth in virus-infected cells that either did not express the ribozyme or produced a ‘disabled’ ribozyme carrying mutations that abolished its catalytic activity. Characterization of the effects of the ribozyme on the HCMV lytic replication cycle further indicates that the expression of the functional ribozyme specifically inhibits the expression of CSP and assemblin, and consequently blocks viral capsid formation and growth. Our results provide the direct evidence that RNase P ribozymes can be used as an effective gene-targeting agent for antiviral applications, including abolishing HCMV growth by blocking the expression of the virus-encoded capsid proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号