首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

2.
The growth and survival of committed hematopoietic progenitors is dependent upon cytokine signaling. However, serum is also required for optimal growth of these progenitors in culture ex vivo. Here we report that serum withdrawal leads to myeloid progenitor cell apoptosis. Although serum deprivation-induced cell death has many hallmarks typical of apoptosis, these cell deaths were not inhibited by hemopoietins, survival factors such as IGF-I, or treatment with a broad-spectrum caspase inhibitor. Rather, apoptosis due to serum withdrawal was associated with damage to mitochondria. Surprisingly the serum factor required for myeloid cell survival was identified as iron, and loss of iron led to marked reductions in ATP production. Furthermore, supplementing serum-deprived myeloid cells with bound or free iron promoted cell survival and prevented mitochondrial damage. Therefore, serum suppresses hematopoietic cell apoptosis by providing an obligate source of iron and iron homeostasis is critical for proper myeloid cell metabolism and survival.  相似文献   

3.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

4.
The death of hemopoietic cells on withdrawal of CSF occurs by a mechanism known as apoptosis characterized by the early degradation of chromatin into oligonucleosome-length fragments. Insulin-like growth factor I plays a pivotal role in the regulation of somatic cell growth as a mediator of growth hormone action. Animals with low levels of circulating IGF-I are more vulnerable to infections and have diminished immune responses. To analyze the possibility of a regulatory role of IGF-I on hemopoiesis and determine its mechanism of action, we have studied the effect of this growth factor on the survival and proliferation of two IL-3-dependent hemopoietic cell lines and in IL-3-responsive primary cultures of bone marrow-derived mast cells. In IL-3-depleted cultures, IGF-I prevented DNA fragmentation and apoptotic cell death. Insulin at high concentration had a weak protective action and IGF-II was inactive in suppressing apoptosis in these IL-3-dependent hemopoietic cells. Cell proliferation was also stimulated by IGF-I in the absence of other hemopoietic growth factors although it was a weak mitogen when compared with IL-3. These results indicate that circulating or locally produced IGF-I may promote survival of both the steady state hemopoietic precursor population and cytokine-producing cells and could therefore regulate hemopoiesis acting in a concerted manner with other CSF.  相似文献   

5.
This review discusses current knowledge about cell death in the developing enteric nervous system (ENS). It also includes findings about the molecular mechanisms by which such death is mediated. Additional consideration is given to trophic factors that contribute to survival of the precursors and neurons and glia of the ENS, as well to genes that, when mutated or deleted, trigger their death. Although further confirmation is needed, present observations support the view that enteric neural crest-derived precursor cells en route to the gut undergo substantial levels of apoptotic death, but that once these cells colonize the gut, there is relatively little death of precursor cells or of neurons and glia during the fetal period. There are also indications that normal neuron loss occurs in the ENS, but at times beyond the perinatal stage. Taken together, these findings suggest that ENS development is similar is some ways, but different in others from extra-enteric areas of the vertebrate central and peripheral nervous systems, in which large-scale apoptotic death of precursor neurons and glia occurs during the fetal and perinatal periods. Potential reasons for these differences are discussed such as a fetal enteric microenvironment that is especially rich in trophic support. In addition to the cell death that occurs during normal ENS development, this review discusses mechanisms of experimentally-induced ENS cell death, such as those that are associated with defective glial cell-line derived neurotrophic factor/Ret signaling, which are an animal model of human congenital megacolon (aganglionosis; Hirschsprung’s disease). Such considerations underscore the importance of understanding cell death in the developing ENS, not just from a curiosity-driven point of view, but also because the pathophysiology behind many disorders of human gastrointestinal function may originate in abnormalities of the mechanisms that govern cell survival and death during ENS development.  相似文献   

6.
7.
This review presents a brief overview of the cell's apoptotic machinery, including specific and indirect death signals. Specific death signals are transferred via death ligands, death receptors, and their intracellular signalling pathways. Indirect death signals cumulate a wide range of stimuli that potentially harm survival of cells. These include intercalating drugs, irradiation or altered intracellular signalling. Herein, a focal point is the mitochondrial control of specific death enzymes--so called caspases--by members of the pro-apoptotic Bax and BH3 subfamily or the anti-apoptotic Bcl-2 subfamily. While the initiation of cell death happens through a variety of signalling systems, the activation of caspases plays a pivotal role in the progression towards the final morphologic findings in cells undergoing apoptosis. Caspases appear to directly cleave and inactivate substrates that are clinical for the maintenance of cell structure and function but also regulate the activity of other enzymes that induce the apoptotic phenotype within the cell. The insulin-like growth factors (IGFs) are potent proliferation factors and potently inhibit apoptosis acting via the ubiquitously expressed IGF-I receptor. Within IGF-I receptor signalling, key to the inhibition of apoptosis are the RAS/RAF/mitogen-activated protein (MAP)-kinase pathway and the PI 3'-kinase pathway. To give an example of high clinical relevance of apoptosis within endocrine disorders, apoptotic death of pancreatic beta cells in type 1 diabetes disease and the involvement of IGF-II in beta cell survival and beta cell function is discussed in detail. Finally, further understanding of signalling systems that are involved in proliferation or in apoptosis might provide novel tools to treat or even heal disorders like type I diabetes.  相似文献   

8.
SFME cells are brain-derived neural precursor cells that are acutely dependent on epidermal growth factor (EGF) for survival, undergoing apoptosis within 24 h after EGF withdrawal. Because the expression of the protooncogene bcl-2 inhibits apoptosis induced by the withdrawal of interleukins or nerve growth factor in some growth factor-dependent haematopoietic or neuronal cell cultures, we examined the effect of Bcl-2 expression on cell death of SFME cells in the absence of EGF. SFME cells expressing human Bcl-2 showed prolonged survival when deprived of EGF compared to control cells not expressing Bcl-2. A significant fraction of Bcl-2-expressing cells remained viable for 4 days in the absence of EGF and resumed proliferation upon readdition of EGF to the cultures. These results suggest that apoptosis induced by EGF withdrawal in SFME cells may share common mechanisms with other growth factor-related apoptotic systems.  相似文献   

9.
Growth factors promote cell survival and proliferation. Homeostasis is maintained by programmed cell death which occurs when the growth stimulus is withdrawn, in response to negative growth regulators such as interferons, TNF- and CD95 ligand, or following differentiation. Although acutely-transforming oncogenes often overcome the need for growth factors, growth regulatory cytokines can influence proliferative responses of transformed cells. In this study we investigated the effects of IL-3 on the proliferative responses of parental bone marrow-derived 32D cells and cells transformed with ras and abl oncogenes. We show that treatment of ras-transformed 32D cells with IL-3 reduced proliferative responses and decreased colony-forming ability. These effects were exacerbated in the absence of serum and associated with inhibition of tyrosine kinase activity, down-regulation of RAS and MYC expression, and induction of apoptosis as indicated by DNA fragmentation. In contrast, treatment of parental 32D cells with IL-3, which is obligatory for cell survival and proliferation, increased tyrosine kinase activity, upregulated MYC and RAS expression and maintained DNA integrity. With abl-transformed cells, proliferation and colony-forming ability were also inhibited by IL-3. Tyrosine kinase activity and MYC expression were reduced, but early apoptosis was not evident. Calcium uptake however, was stimulated by IL-3 in both parental and oncogene-transformed cells. These results suggest that threshold levels of tyrosine kinase activity are necessary for cell survival and proliferation and that with ras-transformed cells, IL-3 treatment may result in this threshold being breached. We conclude that in some situations, growth-promoting cytokines can inhibit proliferation of transformed cells and induce cell death by apoptosis.  相似文献   

10.
The word Apoptosis or pragrammed cell death is described as the ultimate end of multiple cellular events converging from numerous initiating events to the ultimate death of a cell or organism. Several processes, such as initiation of death signals at the plasma membrane, expression of pro-apoptotic oncoproteins, activation of death proteases, endonucleases etc., that ultimately coalesce to a common irreversible execution phase, lead to cell demise. Counteracting the death signals are cell survival factors. A balance between the cell death and cell survival factors plays a major role in the decision making process as to whether a cell should die or must live. It is, therefore, hypothesized that if the balance can be shifted in favor of cell survival, one might be able to arrest the aging process, save the injured cells or else if the balance is shifted toward cell-kill it might help destroy tumors and other undesirable cells.Protein A (PA) of Staphylococcus aureus has been found to have multifarious biological response modifying properties. It has been shown to possess anti-tumor, anti-toxic, anti-parasitic and antifungal activities. It also acts as a potent immunostimulator. PA can protect bone marrow progenitor cells from zidovudin(AZT)-induced apoptosis and can stimulate immunocyte proliferation, thereby helping to replenish/restore the depleted hematopoietic cell pool. Such ability to replenish hematopoietic cells is a common property of PA observed against a number of toxic drugs/chemicals, such as cyclophosphamide, benzene, aflatoxin, salmonella endotoxin, etc.Interestingly, it was further demonstrated in our laboratory that PA can selectively kill tumor cells without affecting normal cells of the host. A search for the mechanisms of PA action revealed that this bacterial protein could shift the balance between pro- and anti-apoptotic proteins in favor of survival in normal cells, but in favor of cell death in tumor cells at a particular dose level. This unique property of PA suggests that controlled use of such type of Biological Response Modifier might help in controlling both cell growth and death phenomena.  相似文献   

11.
《Autophagy》2013,9(4):569-570
Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful. This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings in growth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.  相似文献   

12.
Nicorandil is a nitric oxide (NO) donor used in the treatment of angina symptoms. It has also been reported to protect cells and affect the proliferation and death of cells in some tissues. The molecules that interfere with these processes can cause dysfunction in healthy tissues but can also assist in the therapy of some disorders. In this study we examined the effect of nicorandil and of the molecular precursor that does not have the NO radical (N-(beta-hydroxyethyl) nicotinamide) on the cell proliferation and death of human renal carcinoma cells (786-O) under normal oxygenation conditions. The molecular precursor was used in order to analyze the effects independents of NO. In the cytotoxicity test, nicorandil was shown to be cytotoxic at very high concentrations and it was more cytotoxic than its precursor (cytotoxic at concentrations of 2,000 and 3,000 μg/mL, respectively). We propose that the lower cytotoxicity of the precursor is due to the absence of the NO radical. In this study, the cells exposed to nicorandil showed neither statistically significant changes in cell proliferation nor increases in apoptosis or genotoxicity. The precursor generated similar results to those of nicorandil. We conclude that nicorandil causes no changes in the proliferation or apoptosis of the cell 786-O in normal oxygenation conditions. Moreover, the lack of NO radical in the precursor molecule did not show a different result, except in the cell cytotoxicity.  相似文献   

13.
Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34+ cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G0/G1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells.  相似文献   

14.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

15.
Several cysteine proteases of the caspase family play a central role in many forms of cell death by apoptosis. Other enzymes of the family are involved in cytokine maturation along inflammatory response. In recent years, several caspases involved in cell death were shown to play a role in other cellular processes such as proliferation and differentiation. In the present review, we summarize the current knowledge of the role of caspases in the differentiation of erythroid cells and macrophages. Based on these two examples, we show that the nature of involved enzymes, the pathways leading to their activation in response to specific growth factors, and the specificity of the target proteins that are cleaved by the activated enzymes strongly differ from one cell type to another. Deregulation of these pathways is thought to play a role in the pathophysiology of low-grade myelodysplastic syndromes, characterized by excessive activation of caspases and erythroid precursor apoptosis, and that of chronic myelomonocytic leukemia, characterized by a defective activation of caspases in monocytes exposed to M-CSF, which blocks their differentiation.  相似文献   

16.
Coordination and balance between cell survival and apoptosis is crucial for normal development and homeostasis of multicellular organisms. Defects in control of this balance may contribute to a variety of diseases including cancer, autoimmune and neurodegenerative conditions. Although a large number of pro- and anti-apoptotic factors acting for or against the final death event have been and are being discovered at an extraordinary pace with the recent progress in this area, the molecular mechanisms determining whether a cell lives or dies are not fully understood. Phosphorylation and dephosphorylation of intracellular effector molecules are the most common and important regulatory mechanisms in signal transduction and control a variety of cellular events from cell growth to apoptosis. Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein (MAP) kinase kinase kinase family, which activates both the SEK1-JNK and MKK3/6-p38 MAP kinase pathways and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. This review provides recent findings on the molecular mechanisms which determine cell fate such as survival, proliferation, differentiation or apoptosis, with special focus on the regulatory mechanisms of ASK1-mediated apoptosis.  相似文献   

17.
Dysregulation of apoptosis contributes to various diseases such as neurodegenerative or aging disorders, autoimmune syndromes or cancers. Numerous experimental paradigms have been explored to characterize molecular and cellular modulators of apoptosis. Similarly, numerous techniques have been described for detecting and/or quantifying accurately cells committed to apoptosis. Besides the conventional techniques, we describe in this report that the comet assay, which detects DNA single- and double-strand breaks in situ, at the cellular level, is relevant for the characterization of apoptotic cells. The comet assay is very sensitive and detects DNA fragmentation occurring in the apoptotic process as early as exposure of phosphatidylserine residues on the outer leaflet. Thus the comet assay can be used for the recognition of apoptosis that follows the death signal caused, for example, by genotoxic stress as well as lack of survival signal as in growth factor deprivation.  相似文献   

18.
Malignant melanoma genesis is a very complex process that involves a sequence of pathogenetic cellular events. Mutation of various genes and numerous other cellular mechanisms play an important role in the course of malignant melanocyte alteration and their malignant transformation from naevi into melanoma. Apoptosis is an active, genetically controlled process of programmed cell death, which leads to cell destruction and cell death without involvement of surrounding cells or inflammatory response. In this process, disrupted mechanisms of cell regulation and apoptosis take place in malignant melanoma cells, thus leading to their uncontrolled proliferation and melanocyte growth. Apoptosis is a process that involves two major pathways, the intrinsic and extrinsic apoptotic pathway, which interlace at certain points and ultimately result in apoptosis. It can be said that molecular events regulating cell survival, normal growth arrest, apoptosis and cell differentiation, contribute to the overall pathogenesis of malignant cell growth. It is presumed that in the future, understanding of molecular aberrations and cellular processes, such as cell signaling, cell cycle regulation and cell apoptosis, will be essential for better patient monitoring and rational design of effective treatment.  相似文献   

19.
Correct timing and spatial location of growth factor expression is critical for undisturbed brain development and functioning. In terminally differentiated cells distinct biological responses to growth factors may depend on cell type specific activation of signalling cascades. We show that the hematopoietic growth factors thrombopoietin (TPO) and granulocyte colony-stimulating factor (GCSF) exert cell type specific effects on survival, proliferation and the degree of phosphorylation of Akt1, ERK1/2 and STAT3 in rat hippocampal neurons and cortical astrocytes. In neurons, TPO induced cell death and selectively activated ERK1/2. GCSF protected neurons from TPO- and hypoxia-induced cell death via selective activation of Akt1. In astrocytes, neither TPO nor GCSF had any effect on cell viability but inhibited proliferation. This effect was accompanied by activation of ERK1/2 and inhibition of STAT3 activity. A balance between growth factors, their receptors and signalling proteins may play an important role in regulation of neural cell survival.  相似文献   

20.
Transforming growth factor-beta1 (TGF-beta1) can inhibit cell proliferation or induce apoptosis in multipotent hematopoietic cells. To study the mechanisms of TGF-beta1 action on primitive hematopoietic cells, we used the interleukin-3 (IL-3)-dependent, multipotent FDCP-Mix cell line. TGF-beta1-mediated growth inhibition was observed in high concentrations of IL-3, while at lower IL-3 concentrations TGF-beta1 induced apoptosis. The proapoptotic effects of TGF-beta1 occur via a p53-independent pathway, since p53(null) FDCP-Mix demonstrated the same responses to TGF-beta1. IL-3 has been suggested to enhance survival via an increase in (antiapoptotic) Bcl-x(L) expression. In FDCP-Mix cells, neither IL-3 nor TGF-beta1 induced any change in Bcl-x(L) protein levels or the proapoptotic proteins Bad or Bax. However, TGF-beta1 had a major effect on Bcl-2 levels, reducing them in the presence of high and low concentrations of IL-3. Overexpression of Bcl-2 in FDCP-Mix cells rescued them from TGF-beta1-induced apoptosis but was incapable of inhibiting TGF-beta1-mediated growth arrest. We conclude that TGF-beta1-induced cell death is independent of p53 and inhibited by Bcl-2, with no effect on Bcl-x(L). The significance of these results for stem cell survival in bone marrow are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号