首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pepsinogen secretion from isolated gastric glands, stimulated by 8-bromoadenosine 3',5'-cyclic monophosphate (8BrcAMP), forskolin, or cholecystokinin octapeptide, was inhibited by the presence of amphotericin B in the incubation medium. However, amphotericin had no effect, or only a slight effect (less than 10% inhibition), on pepsinogen secretion stimulated by crude secretin. Incubation of glands with either of the mitochondrial inhibitors, rotenone or carbonyl cyanide m-chlorophenylhydrazone, reduced pepsinogen secretory responses both to 8BrcAMP and to crude secretin. This suggests that amphotericin inhibition, which is secretagogue specific, was not the result of a general metabolic inhibition. Amphotericin caused an increase in sodium and chloride content and a decrease in potassium content of glands. Experiments in which the medium content of either sodium, potassium, or chloride was varied, suggested that part of the amphotericin inhibition could be attributed to a rise in intracellular chloride content. Results did not support the involvement of changes in intracellular sodium or potassium content in the inhibitory mechanism of amphotericin. It was concluded that amphotericin caused a rapid and secretagogue-specific inhibition of pepsinogen secretion in isolated gastric glands, and that the mechanism of inhibition may, to some extent, involve changes in intracellular chloride content.  相似文献   

2.
3.
A number of nonsteroidal anti-inflammatory drugs are non-competitive or mixed inhibitors of human placental dehydrogenases. - and -sulindac sulfide and - and -sulindac inhibit the NAD-linked enzyme as well or better than they inhibit various cyclooxygenases . The remainder of the compounds tested are at least one order of magnitude less effective as inhibitors of the 15-hydroxyprostaglandin dehydrogenases than they are as inhibitors of cyclooxygenases. - and -sulindac sulfide are sufficiently strong inhibitors of the NAD-linked enzyme (Kis of 7.8 μM and 6.8 μM respectively) to raise the possibility that they might also inhibit this enzyme .  相似文献   

4.
J Jarabak 《Prostaglandins》1988,35(3):403-411
A number of nonsteroidal anti-inflammatory drugs are non-competitive or mixed inhibitors of human placental NAD- and NADP-linked 15-hydroxyprostaglandin dehydrogenases. Cis- and trans-sulindac sulfide and cis- and trans-sulindac inhibit the NAD-linked enzyme as well or better than they inhibit various cyclooxygenases in vitro. The remainder of the compounds tested are at least one order of magnitude less effective as inhibitors of the 15-hydroxyprostaglandin dehydrogenases than they are as inhibitors of cyclooxygenases. Cis- and trans-sulindac sulfide are sufficiently strong inhibitors of the NAD-linked enzyme (Kis of 7.8 microM and 6.8 microM respectively) to raise the possibility that they might also inhibit this enzyme in vivo.  相似文献   

5.
Gastric acid secretion is activated by two distinct pathways: a neuronal pathway via the vagus nerve and release of acetylcholine and an endocrine pathway involving gastrin and histamine. Recently, we demonstrated that activation of H(+)-K(+)-ATPase activity in parietal cells in freshly isolated rat gastric glands is modulated by the calcium-sensing receptor (CaSR). Here, we investigated if the CaSR is functionally expressed in freshly isolated gastric glands from human patients undergoing surgery and if the CaSR is influencing histamine-induced activation of H(+)-K(+)-ATPase activity. In tissue samples obtained from patients, immunohistochemistry demonstrated the expression in parietal cells of both subunits of gastric H(+)-K(+)-ATPase and the CaSR. Functional experiments using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein and measurement of intracellular pH changes allowed us to estimate the activity of H(+)-K(+)-ATPase in single freshly isolated human gastric glands. Under control conditions, H(+)-K(+)-ATPase activity was stimulated by histamine (100 microM) and inhibited by omeprazole (100 microM). Reduction of the extracellular divalent cation concentration (0 Mg(2+), 100 microM Ca(2+)) inactivated the CaSR and reduced histamine-induced activation of H(+)-K(+)-ATPase activity. In contrast, activation of the CaSR with the trivalent cation Gd(3+) caused activation of omeprazole-sensitive H(+)-K(+)-ATPase activity even in the absence of histamine and under conditions of low extracellular divalent cations. This stimulation was not due to release of histamine from neighbouring enterochromaffin-like cells as the stimulation persisted in the presence of the H(2) receptor antagonist cimetidine (100 microM). Furthermore, intracellular calcium measurements with fura-2 and fluo-4 showed that activation of the CaSR by Gd(3+) led to a sustained increase in intracellular Ca(2+) even under conditions of low extracellular divalent cations. These experiments demonstrate the presence of a functional CaSR in the human stomach and show that this receptor may modulate the activity of acid-secreting H(+)-K(+)-ATPase in parietal cells. Furthermore, our results show the viability of freshly isolated human gastric glands and may allow the use of this preparation for experiments investigating the physiological regulation and properties of human gastric glands in vitro.  相似文献   

6.
We have previously identified cells containing the enzyme nitric oxide (NO) synthase (NOS) in the human gastric mucosa. Moreover, we have demonstrated that endogenous and exogenous NO has been shown to decrease histamine-stimulated acid secretion in isolated human gastric glands. The present investigation aimed to further determine whether this action of NO was mediated by the activation of guanylyl cyclase (GC) and subsequent production of cGMP. Isolated gastric glands were obtained after enzymatic digestion of biopsies taken from the oxyntic mucosa of healthy volunteers. Acid secretion was assessed by measuring [(14)C]aminopyrine accumulation, and the concentration of cGMP was determined by radioimmunoassay. In addition, immunohistochemistry was used to examine the localization of cGMP in mucosal preparations after stimulation with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). SNAP (0.1 mM) was shown to decrease acid secretion stimulated by histamine (50 microM); this effect was accompanied by an increase in cGMP production, which was histologically localized to parietal cells. The membrane-permeable cGMP analog dibuturyl-cGMP (db-cGMP; 0.1-1 mM) dose dependently inhibited acid secretion. Additionally, the effect of SNAP was prevented by preincubating the glands with the GC inhibitor 4H-8-bromo-1,2,4-oxadiazolo[3,4-d]benz[b][1,4]oxazin-1-one (10 microM). We therefore suggest that NO in the human gastric mucosa is of physiological importance in regulating acid secretion. Furthermore, the results show that NO-induced inhibition of gastric acid secretion is a cGMP-dependent mechanism in the parietal cell involving the activation of GC.  相似文献   

7.
Neurotensin is a tridacapeptide which has been isolated from bovine hypothalamus. The action of synthetic neurotensin was studied on gastric acid secretion in dogs provided with gastric pouches. Intravenously infused neurotensin, 50 ng × kg?1 × min?1, was found to produce a considerable inhibition of pentagastrin stimulated gastric acid secretion. On the other hand, there was no sign of inhibition of histamine induced gastric acid secretion. The experiments show that neurotensin, isolated from the central nervous system is a potent gastric secretory inhibitor and that it has a selective action in inhibiting gastric acid responses to pentagastrin but not to histamine.  相似文献   

8.
9.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are valuable agents; however, their use has been limited by their association with mucosal damage in the upper gastrointestinal tract. NSAIDs inhibit cyclooxygenase and consequently block the synthesis of prostaglandins, which have cytoprotective effects in gastric mucosa; these effects on prostaglandins have been thought to be major cause of NSAID-induced ulceration. However, studies indicate that additional NSAID-related mechanisms are involved in formation of gastric lesions. Here, we used a toxicoproteomic approach to understand cellular processes that are affected by NSAIDs in mouse stomach tissue during ulcer formation. We used fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS)-which consists of fluorogenic derivatization, separation and fluorescence detection by LC, and identification by LC-tandem mass spectrometry-in this proteomic analysis of pyrolic stomach from control and diclofenac (Dic)-treated mice. FD-LC-MS/MS results were highly sensitive; 10 differentially expressed proteins were identified, and all 10 were more highly expressed in Dic-treated mice than in control mice. Specifically, expression levels of 78 kDa glucose-regulated protein (GRP78), heat shock protein beta-1 (HSP27), and gastrin were more than 3-fold higher in Dic-treated mice than in control mice. This study represents a first step to ascertain the precise actors of early NSAID-induced ulceration.  相似文献   

10.
Gastric acid secretion is not only stimulated via the classical known neuronal and hormonal pathways but also by the Ca(2+)-Sensing Receptor (CaSR) located at the basolateral membrane of the acid-secretory gastric parietal cell. Stimulation of CaSR with divalent cations or the potent agonist Gd(3+) leads to activation of the H(+)/K(+)-ATPase and subsequently to gastric acid secretion. Here we investigated the intracellular mechanism(s) mediating the effects of the CaSR on H(+)/K(+)-ATPase activity in freshly isolated human gastric glands. Inhibition of heterotrimeric G-proteins (G(i) and G(o)) with pertussis toxin during stimulation of the CaSR with Gd(3+) only partly reduced the observed stimulatory effect. A similar effect was observed with the PLC inhibitor U73122. The reduction of the H(+)/K(+)-ATPase activity measured after incubation of gastric glands with BAPTA-AM, a chelator of intracellular Ca(2+), showed that intracellular Ca(2+) plays an important role in the signalling cascade. TMB-8, a ER Ca(2+)store release inhibitor, prevented the stimulation of H(+)/K(+)-ATPase activity. Also verapamil, an inhibitor of L-type Ca(2+)-channels reduced stimulation suggesting that both the release of intracellular Ca(2+) from the ER as well as Ca(2+) influx into the cell are involved in CaSR-mediated H(+)/K(+)-ATPase activation. Chelerythrine, a general inhibitor of protein kinase C, and Go 6976 which selectively inhibits Ca(2+)-dependent PKC(alpha) and PKC(betaI)-isozymes completely abolished the stimulatory effect of Gd(3+). In contrast, Ro 31-8220, a selective inhibitor of the Ca(2+)-independent PKCepsilon and PKC-delta isoforms reduced the stimulatory effect of Gd(3+) only about 60 %. On the other hand, activation of PKC with DOG led to an activation of H(+)/K(+)-ATPase activity which was only about 60 % of the effect observed with Gd(3+). Incubation of the parietal cells with PD 098059 to inhibit ERK1/2 MAP-kinases showed a significant reduction of the Gd(3+) effect. Thus, in the human gastric parietal cell the CaSR is coupled to pertussis toxin sensitive heterotrimeric G-Proteins and requires calcium to enhance the activity of the proton-pump. PLC, ERK 1/2 MAP-kinases as well as Ca(2+) dependent and Ca(2+)-independent PKC isoforms are part of the down-stream signalling cascade.  相似文献   

11.
Angiogenesis, the formation of new capillary blood vessels, is essential not only for the growth and metastasis of solid tumors, but also for wound and ulcer healing, because without the restoration of blood flow, oxygen and nutrients cannot be delivered to the healing site. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, indomethacin and ibuprofen are the most widely used drugs for pain, arthritis, cardiovascular diseases and, more recently, the prevention of colon cancer and Alzheimer disease. However, NSAIDs produce gastroduodenal ulcers in about 25% of users (often with bleeding and/or perforations) and delay ulcer healing, presumably by blocking prostaglandin synthesis from cyclooxygenase (COX)-1 and COX-2 (ref. 10). The hypothesis that the gastrointestinal side effects of NSAIDs result from inhibition of COX-1, but not COX-2 (ref. 11), prompted the development of NSAIDs that selectively inhibit only COX-2 (such as celecoxib and rofecoxib). Our study demonstrates that both selective and nonselective NSAIDs inhibit angiogenesis through direct effects on endothelial cells. We also show that this action involves inhibition of mitogen-activated protein (MAP) kinase (ERK2) activity, interference with ERK nuclear translocation, is independent of protein kinase C and has prostaglandin-dependent and prostaglandin-independent components. Finally, we show that both COX-1 and COX-2 are important for the regulation of angiogenesis. These findings challenge the premise that selective COX-2 inhibitors will not affect the gastrointestinal tract and ulcer/wound healing.  相似文献   

12.
The role played by glucose in providing energy for acid formation was studied in isolated gastric glands from rabbit. The widely-used inhibitors of glycolysis, iodoacetic acid and iodoacetamide were found to inhibit glucose oxidation as well as the indicators of acid formation, respiration and accumulation of aminopyrine. However, the potent inhibition of acid formation was found to involve a nonspecific mechanism other than the simple inhibition of glycolysis. An alternative approach involved use of the glucose transport inhibitor, phloretin. Phloretin blocked glucose oxidation and also inhibited functional responses. Acid formation was restored easily by the addition of pyruvate or various other oxidizable substrates. Measurement of lactate formation in the absence of exogenous glucose showed that the gastric glands contain very little glycogen. Addition of external glucose resulted in a 10-fold increase in lactate formation and this rate was stimulated further by histamine and rotenone. Rotenone also inhibited both respiration and aminopyrine accumulation; however, the inhibition was not complete. Phloretin treatment resulted in total inhibition of the residual aminopyrine accumulation after rotenone treatment. The results are interpreted to indicate that gastric glands are dependent almost totally on external substrate supply to support acid formation; and, that while anaerobic glucose metabolism can sustain a very low level of acid formation, the major role of glucose is to yield pyruvate equivalents for subsequent oxidation.  相似文献   

13.
1. The effects of three inhibitors of gastric acid secretion, atropine, burimamide and thiocyanate, have been studied in isolated glands from the rabbit gastric mucosa. The glands were either resting or stimulated by carbachol, histamine or dibutyryl cyclic AMP. The effects were determined from changes in oxygen consumption and accumulation of the weak base aminopyrine. The latter gives an indirect measurement of the acid production in the glands. 2. Atropine (10 (-6) M) almost totally inhibited the transient response induced by carbachol (10 (-4) M) in both measured parameters. The histamine-induced increase in respiration was inhibited when the atropine concentration was raised to 10 (-4) M. To a lesser extent also, histamine-induced aminopyrine accumulation was reduced. The dibutyryl cyclic AMP stimulated oxygen consumption was not affected by atropine. 3. Burimamide competitively inhibited the histamine responses but was without effect on those of carbachol and dibutyryl cyclic AMP. 4. Thiocyanate (10 (-2) M) inhibited the increase in oxygen consumption induced by all three secretagogues but not down the prestimulatory level, in spite of total abolishment of the aminopyrine accumulation. 5. In unstimulated glands, burimamide (10 (-3) M) or atropine (10 (-4) M) did not alter the normal aminopyrine ratio (aminopyrine in intraglandular water/ aminopyrine in extraglandular water) of approximately 50. This may indicate the existence of preformed acid in resting parietal cells. Thiocyanate, on the other hand, lowered the aminopyrine ratio in unstimulated glands from 46 to 2. Possible mechanisms for the thiocyanate effect are discussed in terms of an inability to separate acid and base in the secreting membrane.  相似文献   

14.
The physiological adenine derivatives, adenosine (ADO), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP) and adenosine 5'-triphosphate (ATP) at concentrations ranging from 10 microM to 1 mM caused concentration-related modifications on gastric H+ secretion, as measured by the aminopyrine accumulation method, in resting and histamine-stimulated rabbit gastric glands. In resting glands, ADO caused significant concentration-related increases of the basal H+ secretion, whereas no changes were obtained in response to the other purines tested. In histamine-stimulated glands, ADO and AMP caused concentration-related potentiation of the histamine-raised H+ secretory rate, while ATP and ADP induced graded inhibition. The results suggest the involvement of purinergic mechanisms in the physiological regulation of the gastric acid secretory process.  相似文献   

15.
16.
The purpose of this present study was to develop a method for stimulation of acid secretion by the isolated perfused rat stomach. Rat stomachs were perfused insitu via the abdominal aorta and celiac axis with Krebs-Ringer bicarbonate buffer in the presence or absence of 10% ovine erythrocytes. The gastric lumen was perfused with distilled water and gastric contents were collected at frequent intervals through a catheter at the pylorus. Sixty minute gastric acid output in response to various concentrations of pentagastrin was determined by titration of gastric contents with 0.01 N NaOH to pH 7.0. During arterial perfusion with Krebs-Ringer bicarbonate buffer in the absence of ovine erythrocytes gastric acid output was 2.50±0.58 SEM μEq H+/h, which did not increase in response to perfusion with Krebs-Ringer bicarbonate buffer containing pentagastrin. However, inclusion of 10% ovine erythrocytes in the arterial perfusate resulted in substantial stimulation of gastric acid by pentagastrin: maximal acid output, achieved with a pentagastrin dose of 0.6 μg/kg/h, was 23.5±3.73 μEq H+/h (p<0.01). The results of the present study demonstrate the capacity of the isolated vascularly perfused rat stomach to secrete acid and provide a model for studying interactions of gastrointestinal regulatory peptides and their physiologic roles in the regulation of gastric acid secretion.  相似文献   

17.
Epidermal growth factor (EGF) is a polypeptide present in mammalian salivary glands which has been shown to have mitogenic and gastric acid inhibitory properties in vivo. The mechanisms of action of EGF at the level of the parietal cell are not clear. In the present study, we have examined the effects of EGF on both acid and macromolecular (intrinsic factor, IF) secretion stimulated by the cyclic AMP-mediated agonist histamine using the rabbit isolated gastric gland model. Acid secretion was assessed by the accumulation of [14C]aminopyrine (AP) in glands and IF in the supernatants by the binding of [57Co]cyanocobalamin. Histamine (10(-6) to 5 x 10(-5) M) resulted in a 4-6 fold increase in [14C]AP and IF (P less than 0.05). EGF alone (10(-8) M, 10(-7) M) had no significant effect on basal [14C]AP accumulation or IF secretion (P less than 0.05). EGF (10(-7) M) significantly inhibited the histamine dose-response curve for [14C]AP and IF, but a relatively greater inhibition was observed at higher histamine concentration. These data demonstrate that EGF inhibits both acid and IF secretion in vitro at concentrations consistent with those observed in vivo. The observations further support the hypothesis that EGF may play a role in the regulation of parietal cell secretion.  相似文献   

18.
Cecropia glazioui Sneth (Cecropiaceae) is used in folk medicine in tropical and subtropical Latin America as cardiotonic, diuretic, hypotensive, anti-inflammatory and anti-asthmatic. The hypotensive/antihypertensive activity of the plant aqueous extract (AE) and isolated butanolic fraction (BuF) has been confirmed and putatively related to calcium channels blockade in vascular smooth musculature [Lapa, A.J., Lima-Landman, M.T.R., Cysneiros, R.M, Borges, A.C.R., Souccar, C., Barreta, I.P., Lima, T.C.M., 1999. The Brazilian folk medicine program to validate medicinal plants – a topic in new antihypertensive drug research. In: Hostettman, K., Gupta, M.P., Marston, A. (Eds.), Proceedings Volume, IOCD/CYTED Symposium, Panamá City, Panamá, 23–26 February 1997. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas. Harwood Academic Publishers, Amsterdam, pp. 185–196; Lima-Landman, M.T., Borges, A.C., Cysneiros, R.M., De Lima, T.C., Souccar, C., Lapa, A.J., 2007. Antihypertensive effect of a standardized aqueous extract of Cecropia glaziovii Sneth in rats: an in vivo approach to the hypotensive mechanism. Phytomedicine 14, 314–320]. Bronchodilation and antidepressant-like activities of both AE and BuF have been also shown [Delarcina, S., Lima-Landman, M.T., Souccar, C., Cysneiros, R.M., Tanae, M.M., Lapa, A.J., 2007. Inhibition of histamine-induced bronchospasm in guinea pigs treated with Cecropia glaziovi Sneth and correlation with the in vitro activity in tracheal muscles. Phytomedicine 14, 328–332; Rocha, F.F., Lima-Landman, M.T., Souccar, C., Tanae, M.M., De Lima, T.C., Lapa, A.J., 2007. Antidepressant-like effect of Cecropia glazioui Sneth and its constituents – in vivo and in vitro characterization of the underlying mechanism. Phytomedicine 14, 396–402]. This study reports the antiulcer and antisecretory gastric acid activities of the plant AE, its BuF and isolated compounds with the possible mechanism involved. Both AE and BuF were assayed on gastric acid secretion of pylorus-ligated mice, on acute models of gastric mucosal lesions, and on rabbit gastric H+, K+-ATPase preparations. Intraduodenal injection of AE or BuF (0.5–2.0 g/kg, i.d) produced a dose-related decrease of the basal gastric acid secretion in 4-h pylorus-ligated mice. At 1.0 g/kg, BuF decreased the volume (28%) and total acidity (33%) of the basal acid secretion, and reversed the histamine (2.5 mg/kg, s.c.)- or bethanecol (1.0 mg/kg, s.c.)-induced acid secretion to basal values, indicating inhibition of the gastric proton pump. Pretreatment of mice with the BuF (0.05–0.5 g/kg, p.o.) protected against gastric mucosal lesions induced by 75% ethanol, indomethacin (30 mg/kg, s.c.) or restraint at 4 °C. BuF also decreased the gastric H+, K+-ATPase activity in vitro proportionately to the concentration (IC50=58.8 μg/ml). The compounds isolated from BuF, consisting mainly of cathechins, procyanidins and flavonoids [Tanae, M.M., Lima-Landman, M.T.R., De Lima, T.C.M., Souccar, C., Lapa, A.J., 2007. Chemical standardization of the aqueous extract of Cecropia glaziovii Sneth endowed with antihypertensive, bronchodilator, antacid secretion and antidepressant-like activities. Phytomedicine 14, 309–313], inhibited the in vitro gastric H+, K+-ATPase activity at equieffective concentrations to that of BuF. The results indicate that C. glazioui constituents inhibit the gastric proton pump; this effect may account for the effective antisecretory and antiulcer activities of the standardized plant extract.  相似文献   

19.
Previous studies have demonstrated that fatty acid amide hydrolase, the enzyme responsible for the metabolism of anandamide, is inhibited by the acidic non-steroidal anti-inflammatory drug (NSAID) ibuprofen with a potency that increases as the assay pH is reduced. Here we show that (R)-, (S)- and (R,S)-flurbiprofen, indomethacin and niflumic acid show similar pH-dependent shifts in potency to that seen with ibuprofen. Thus, (S)-flurbiprofen inhibited 2 microM [3H]anandamide metabolism with IC50 values of 13 and 50 microM at assay pH values of 6 and 8, respectively. In contrast, the neutral compound celecoxib was a weak fatty acid amide hydrolase inhibitor and showed no pH dependency (IC50 values approximately 300 microM at both assay pH). The cyclooxygenase-2-selective inhibitors nimesulide and SC-58125 did not inhibit fatty acid amide hydrolase activity at either pH. The data are consistent with the conclusion that the non-ionised forms of the acidic NSAIDs are responsible for the inhibition of fatty acid amide hydrolase.  相似文献   

20.
The peroxyl-radical-scavenging mechanism of some nonsteroidal anti-inflammatory drugs (NSAIDs), namely tolmetin, ketorolac, indomethacin, acemetacin, and oxaprozin, is clarified by combined density functional theory (DFT) calculations. It is revealed that H-atom-abstraction rather than electron transfer reaction is involved in the radical-scavenging process of these NSAIDs in polar aqueous solution. This seems contrary to the common viewpoint that the latter is predominant in polar media. The calculated results also show that H-atom at C(beta) or C(gamma) position is readily to be abstracted, and the lowest C-H bond dissociation enthalpy (BDE) can qualitatively account for the activity difference for the five NSAIDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号