首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of rice (Oryza sativa L.) recombinant inbred lines from a cross between Zhenshan 97 (indica) and HR5 (indica) was planted for four different growing seasons in two locations at three nitrogen (N) fertilization levels (N300, 300 kg urea/ha; N150, 150 kg urea/ha; and N0, 0 kg urea/ha). Grain yield and its components were evaluated, including grain yield per plant (GYPP), panicle number per plant (PNPP), grain number per panicle (GNPP), filled grains per panicle (FGPP), spikelet fertility percentage (SFP) and 100-grain weight (HGW). Correlation and path analysis indicated that SFP had the greatest contribution to GYPP at the N300 and N150 levels, but FGPP contributed the most to GYPP at the N0 level. Quantitative trait loci (QTL) were mapped based on a mixed linear model; genetic components (main effects, epistatic effects and QTL-by-environment interactions) were estimated separately. Six to 15 QTL with main effects were detected for each trait except SFP. Clusters of main-effect QTL associated with PNPP, GNPP, SFP and HGW were observed in regions on chromosomes 1, 2, 3, 5, 7 and 10. The main-effect QTL (qGYPP-4b and qGNPP-12) were only detected at the N0 level and explained 10.9 and 10.2% of the total phenotypic variation, respectively. A total of 33 digenic interactions among grain yield and its components were also identified. The identification of genomic regions associated with yield and its components at different nitrogen levels will be useful in marker-assisted selection for improving the nitrogen use efficiency of rice.  相似文献   

2.
Summary Studies revealed that the application of fertilizer nitrogen brought a significant increase in grain and straw yield of wheat. The significant effect was also noticed on such yield contributing characters like number of effective tillers per metre row length, spike length, and number of grains per spike. The increase of nitrogen level from 40 kg/ha to 80 kg/ha also brought a significant increase in yield and yield contributing characters. The application of entire dose of nitrogen at the time of sowing was as good as its split application. The application of nitrogen also influenced the nitrogen concentration of grains whereas, the other treatments did not influence the nitrogen concentration in grains or straw. The nitrogen treatments did not influence the moisture content of soil. The application of mulch or mulch+Kaolin resulted in significantly higher content of soil moisture in 0–15 cm soil depth as compared to control or Kaolin spray alone which was simultaneously reflected in yield and yield contributing characters.  相似文献   

3.
The influence of four nitrogen levels (0, 60, 90 and 120 kg N/ha) on growth of maize and development of lepidopterous pests was investigatdd in a field trial. Nitrogen had a positive effect on both plant growth variables (plant height, stem diameter and yield), and development and survival ofSesamia calamistis andEldana saccharina, and thereby increased the incidence of dead hearts and stem tunneling. However, the percent yield loss due to artificial infestation decreased with increasing N application rate from 20% to 11% in the in the 0kg/ha and 120kg/ha treatment, respectively. Using a multiple regression analysis, plant height, plant diameter and stem tunneling were found to be the most important variables explaining the variability in maize yield.  相似文献   

4.
Summary Field experiments were conducted to determine the effects of the amount, time and method of fertilizer N application on the efficiency of N uptake, N2 fixatio and yield of soybean. Soil and foliar fertilizer N, applied during the pod-filling stage were absorbed by plants with equal and high efficiency, compared to an appreciably lower utilization efficiency for N applied before seedling emergence. These results reveal that the soybean roots were active in N uptake during these late stages of growth. Nitrogen fertilization during pod-filling resulted in significant yield increases over the control treatment which received an early application of 20 Kg N/ha. Seed yield increases were, however, more pronounced than total dry matter yield, and virtually all of the late-applied N was translocated into the pods. Nitrogen fixation in soybean was not influenced by the application of 40 kg N/ha to plants as soil or foliar N during the pod-filling stage. However, 80 kg N/ha supplied during pod-filling as 40 kg soil plus 40 kg foliar N/ha significantly reduced the amount of N2 fixed. The results obtained in these studies suggest that inadequate N supply during pod-filling limited soybean yields, and that by the judicious application of fertilizer N during the late stages of growth, it was possible to enhance soybean yields without necessarily inhibiting N2 fixation.  相似文献   

5.
玉米-大豆间作和施氮对玉米产量及农艺性状的影响   总被引:9,自引:0,他引:9  
为研究玉米-大豆间作模式和施氮水平对玉米产量、主要农艺性状及生长动态的影响,进行2个种植模式(玉米单作和玉米-大豆间作)和2个施氮水平(0 kg/hm2,150 kg/hm2)的双因素随机区组试验,以期揭示施氮和间作对玉米产量的影响规律,为提高玉米-大豆间作系统产量提供一定的理论依据。研究结果表明:(1)与不施氮相比,施氮显著增加了春秋两季间作玉米产量,分别达到23.81%和40.99%。施氮处理下的间作玉米地上部生物量较不施氮提高了29.91%,单作模式下显著提高了40.34%,两者差异均达到显著水平。(2)与不施氮相比,施氮150 kg/hm2条件下春玉米单作和间作模式百粒重分别提高了18.92%和19.23%,秋玉米单作和间作模式百粒重分别提高了31.03%和32.75%,差异均达到显著水平。与不施氮相比,施氮150 kg/hm2条件下,单作和间作模式均显著提高秋玉米穗长。与不施氮相比,施氮150 kg/hm2条件下,单作秋玉米的穗粗提高了18.67%,差异显著。(3)施氮和间作均能促进玉米干物质累积、提高株高和叶绿素(SPAD值),且表现为施氮效果高于间作效果。总体来看,种植模式和施氮水平对玉米产量、主要农艺性状和生长动态均有一定影响,且施氮效果优于间作效果。由于土壤具有一定的供氮能力,而间作豆科能为玉米供给一定量的氮素,故对于春玉米而言,施氮效果仅在百粒重中表现,随着土壤原有氮素被玉米吸收利用减少后,供氮能力下降,在秋玉米中施氮效果显著提高。  相似文献   

6.
Summary To determine effects of level and time of application of urea on grain yields, components of grain yield, and nitrogen use efficiency by irrigated direct seeded rice (Oryza sativa L. var. IR 298-12-1-1-1), three field experiments were conducted at the Gezira Agricultural Research Station during the period 1976–78. The treatments included the factorial combination of three levels of nitrogen as urea (0,75 and 150 kg N/ha) two or three splits, and three times of topdressing of urea (early season application, 10 days after rice emergence, DRE; maximum tillering stage, 40 DRE; and panicle initiation stage, 75 DRE).Without application of nitrogen, grain yields averaged 1.5 t/ha. The yields averaged for rate and time of split significantly increased with increase in nitrogen applied to 3.9 and 5.0 t/ha, but nitrogen use efficiency (kg rice/kg N) decreased from 31 to 23 with the application of 75 and 150 kg N/ha respectively.As compared to other treatments of time of urea application, topdressing of urea at maximum tillering and panicle initiation stages significantly improved nitrogen use efficiency by promoting production of more panicles per unit land area, and increasing grain weight. Three splits were no better than the two splits given at maximum tillering and panicle initiation stages.  相似文献   

7.
Ravenna grass, Tripidium ravennae (L.) H. Scholz, is known to produce an abundance of biomass, but how plant density affects its biomass potential remains unknown. The objectives were to determine the effects of plant density on biomass yield; plant growth traits; biomass?carbon, nitrogen, and ash concentrations; heating value; nitrogen removal; and sucrose concentration in leaves and culms. The treatments consisted of five plant densities (1,250; 2,500; 5,000; 10,000; and 20,000 plants per hectare) in a randomized complete block design with four blocks. Plots were nonirrigated, unfertilized, and harvested once during the dormant season each year. Data were collected from 2015?2019. Dependent variables that varied with plant population density (p < .05) were biomass yield, number of reproductive culms per plant, reproductive culm diameter, reproductive culm sucrose concentration, and nitrogen removal with biomass. Biomass yield ranged from 5.6 to 16.3 Mg/ha for plant densities of 1,250–20,000 plants per hectare, respectively. Combined over years, nonlinear regression of the data showed the equation for biomass yield to plateau at 16.2 Mg/ha at a plant density of 10,640 plants per hectare. As plant density increased, the number of reproductive culms per plant, culm diameter, and culm sucrose concentration significantly decreased. At 1,250 plants per hectare, the number of reproductive culms per plant, culm diameter, and culm sucrose averaged 70, 10.2 mm, and 63.2 g/kg, respectively. Nitrogen removed with biomass significantly increased as biomass yield increased with plant density. At a density of 10,000 and 20,000 plants per hectare, the amount of nitrogen removed annually in the harvested biomass averaged 88 kg/ha. The data suggest that 10,000 plants per hectare would produce the greatest annual biomass yields; however, research is needed to determine the nutrient requirement for Ravenna grass to sustain biomass production at that density.  相似文献   

8.
过量施用氮肥导致氮肥利用率降低,环境风险加大.合理降低施氮量、优化氮肥运筹对于小麦高产高效栽培具有重要意义.本研究采用大田试验,以常规施氮方式(240 kg N·hm-2, 基肥∶拔节肥∶孕穗肥=5∶3∶2)为对照,研究了不同施氮量(240、180、150 kg N·hm-2,分别用N240、N180、N150表示)及基苗肥施用时期(基施、4叶期施、6叶期施,分别用L0、L4、L6表示)对小麦产量和氮素利用效率的影响.结果表明: 小麦籽粒产量随施氮量的降低而降低,但N180与N240处理相比无显著差异,而N150处理显著降低;氮肥农学效率和吸收效率均以N180处理最高.不同施肥时期间,L4处理的籽粒产量和氮肥利用率最高.N180四叶施肥(N180L4)处理的产量与对照无显著差异,但氮肥利用率显著提高.N180L4处理叶面积指数、旗叶光合速率、叶片氮含量、旗叶硝酸还原酶和谷氨酰胺合成酶活性、拔节后干物质和氮素积累量较对照未显著降低.适量降低氮肥用量配合基肥后移能够提高生育后期光合生产能力和氮素吸收同化能力,在保持高产的条件下实现氮素利用效率的同步提高.  相似文献   

9.
Summary A field experiment was conducted on soybean (Glycine max (L.) Merrill) with a view to find out the effect of seed inoculation and scheduling of irrigation on nodulation, accumulation and re-distribution of nitrogen in plant tops and soil. The eight treatment combinations consists of two seed inoculations,viz. uninoculated and inoculated with rhizobium culture, and four irrigation schedules,viz. irrigation water to the cumulative pan evaporation (IW/CPE) ratio of 0.5, 0.7, 0.9 and a control (rainfed). Seed inoculation by, rhizobium culture increased the number, dry-weight and N content of nodules per plant. Inoculation of seeds also increased the N accumulation rate in plant top and it was 2.48 kg/ha/day during the flower-initiation to the pod-initiation stage (30–60 days interval). At harvest, 32.2, 47.8 and 26.2 kg N/ha was re-distributed from the stems, leaves and pods-wall of inoculated plants to the grains, respectively. A total of 186.5 kg N/ha was harvested and 64.7 kg N/ha, was accumulated in soil under the inoculated condition.Scheduling of irrigation at 0.7 IW/CPE proved better, than other irrigation schedules and helped in increasing the nodulation, nitrogen accumulation and grain yield. As compared to control, 8.4, 17.8 and 18.4 kg more of N/ha was redistributed from the stems, leaves and pods-wall respectively when the irrigations were scheduled at 0.7 IW/CPE ratio. Under this irrigation schedule the total N harvest was 200.1 kg/ha while the total N increased by 55.9 kg over that present in soil at the time of sowing.  相似文献   

10.
Studies were carried out to optimize the use of water and nutrients by the crop with three moisture regimes [0.9, 1.2 and 1.5 irrigation water:cumulative pan evaporation (IW:CPE) ratios], two variables of organic mulch (control and sugarcane trash at 7 t/ha) and three levels of nitrogen (0, 100 and 200 kg/ha). Soil moisture regimes maintained at 1.2 IW:CPE ratio significantly increased the crop growth and herb and essential oil yields as compared with that of 0.9 IW:CPE ratio. The increase in herb yield due to 1.5 and 1.2 IW:CPE ratios was recorded to be 28.5% and 19%, respectively, over the irrigation given at 0.9 IW:CPE ratio, with the corresponding increase in essential oil yield to the extent of 23.5% and 15.5%. Interaction effect of moisture regimes and nitrogen rates indicated that increasing levels of irrigation at the highest level of N (200 kg/ha) improved essential oil yield of the crop. Application of N at 200 kg/ha in the mulched plots significantly enhanced the N uptake by the crop and essential oil yield over the control and 100 kg N/ha applied in the mulched/or unmulched plots and 200 kg N/ha applied in the unmulched plots. Application of organic mulch and nitrogen at 200 kg/ha improved the water use efficiency (WUE) in menthol mint crop. Higher moisture regimes maintained up to 1.2 IW:CPE ratio increased the WUE. The quality of essential oil in terms of its major constituent, menthol, improved slightly with 1.2 IW:CPE ratio as compared to 0.9 and 1.5 IW:CPE ratios at first and second harvests of the crop. It is recommended that menthol mint crop could be grown profitably by providing 16 irrigations, that is 80 cm water (based on 1.2 IW:CPE ratio) and nitrogen at 200 kg/ha in the sugarcane trash mulched plots, which could give a highest benefit:cost ratio from menthol mint cropping.  相似文献   

11.
Summary The yield responses to nitrogen uptake are described for water-sown IR8 rice grown in the wet season in northern Australia. Various patterns of nitrogen uptake were achieved by different times and amounts of nitrogen application in the range 0 to 300 kg per ha. Grain yields increased with nitrogen uptake at flowering stage up to approximately 120 kg per ha but decreased when uptake exceeded this level. The grain yield increase was associated mainly with increased panicle production, while grain yield decrease was associated with a reduction in the weight of ripened grain per panicle. Nitrogen concentration in grain over all experiments increased linearly with nitrogen uptake at flowering, but grain yield was reduced when grain nitrogen exceeded approximately 1.5 per cent. High nitrogen uptake at flowering was presumed to lead to depletion of carbohydrate reserves during the critical grain-ripening phase.  相似文献   

12.
The effect of composted textile sludge on growth, nodulation and nitrogen fixation of soybean and cowpea was evaluated in a greenhouse experiment. The compost was incorporated into soil at 0, 9.5, 19 and 38 t ha(-1) (bases upon the N requirement of the crops, i.e., 0, 50, 100 and 200 kg available N ha(-1)). Growth, nodulation and shoot accumulation of nitrogen were evaluated 36 and 63 days after plant emergence. Nodule glutamine synthetase (GS) activity and leghemoglobin content were evaluated 63 days after emergence. Composted textile sludge did not show negative effects on nodule number and weight, nodule GS activity and leghemoglobin content. Nitrogen accumulation in shoot dry matter in soybean and cowpea was higher than other treatments with application of 19 t ha(-1) of compost. Composting can be an alternate technology for the management of solid textile mill sludge. This study verifies that the composted textile sludge was not harmful to growth, nodulation and nitrogen fixation of soybean and cowpea.  相似文献   

13.
N. P. Sinha  B. Prasad 《Plant and Soil》1980,57(2-3):159-165
Summary The nett gain or loss of total soil nitrogen was worked out from a long-term manure and fertilizer experiment conducted for seven years and still continuing at Ranchi Agricultural College, Kanke, Ranchi India. The total nitrogen in soil showed a deficit balance where lower and unbalanced doses of fertilizers were applied. Increasing levels of fertilizer combinations with lime removed the highest amount of nitrogen in intensive cropping. The nett loss was highest (95 kg/ha) in case of control, at 100% NPK the nett gain was 37 kg N per ha, and at 150% NPK 72 kg N per ha which was the highest.  相似文献   

14.
Benniseed (Sesanum indicum L.) is well known oil-seed crop grown mostly in the Savannah areas of Nigeria, and with little cultivation in the forest south. A two-season experiment was conducted in 2005 and 2006 to determine the influence of plant density and nitrogen application on podrot, oil content and pod weight of benniseed in the rain forest belt of Nigeria. Analysis of variance indicated that only the podrot and oil content were affected by plant population. An increase of 17.6% and 18.8% in oil content was recorded when plant density increased from 160,000 to 250,000 plants/ha recorded lowest podrot 2.02; 2.30 in the first and second seasons while 45 kg/ha, recording the lowest podrot of 2.59 and 2.63 in 2004 and 2005, respectively. 0 kg/ha (control) recorded the highest podrot of 3.14 and 3.46 in 2004 and 2005, respectively. An increase of 16.6% and 17.5% oil content was recorded when the plant population increased from 160,000 to 250,000 plants/ha in the first and second seasons, respectively. Further increase from 111,111 to 160,000 resulted in a further increase of 4.8 and 6.2 in the first and second seasons respectively. Nitrogen fertiliser is highly significant on podrot (P < 0.05), more so, interaction of plant density and nitrogen application were highly significant on pod weight with 250,000 plants/ha and 45kg/ha nitrogen recording the highest pod weight in 2004 and 2005, respectively. Mean values of main effect indicated optimal yield at the highest plant population of 250,000 plants/ha in the first and second seasons. However, yield was highest at the combination of 45 kg/ha and 250,000 plants/ha in all the seasons investigated.  相似文献   

15.
《Biomass》1989,18(2):95-108
Short rotation trials cuttings poplar (Populus x rasumowskyana) in Southern Finland investigated establishment of poplar plantations and the effects of spacing and application of nitrogen fertilizer on biomass production over a period of 6 years. Thicker cuttings grew better whilst those of less than 1 cm diameter grew only moderately. Nitrogen fertilization improved height and diameter growth and above-ground dry mass yield. Woody biomass production was 4·2 dry tons/ha per year, at 300 kg/ha nitrogen. A spacing of 15 000 stems/ha gave the best yield after 4 years, but 5000 stems/ha was a more productive spacing in the next 2 years.  相似文献   

16.
Summary Two fertilizer experiments were conducted in the field at Beerwah, South-East Queensland. In the first experiment leaf nitrogen concentrations, and the yield of ginger shoots and rhizomes at early and late harvests increased both with the total amount of nitrogen applied up to the highest level studied (336 kg N/ha as ammonium nitrate) and with the number of applications making up the total. At all levels of nitrogen application the apparent recovery of fertilizer nitrogen increased in the order 1 application <2 applications <4 applications. At 33.6 kg N/ha there appeared to be no advantage in dividing the total N applied into more than 4 applications but the data suggested higher recoveries of nitrogen with 8 applications at 112 kg N/ha and 336 kg N/ha. In the second experiment, ammonium nitrate, urea, and ammonium sulphate were found to be equally effective as nitrogen fertilizers for ginger when applied at equal rates of nitrogen per hectare. However, in terms of cost effectiveness they rated in the order urea > ammonium nitrate > ammonium sulphate.All three nitrogen sources acidified the soil, the decrease in soil pH during the growing season increasing with increasing rate of application. In Experiment 1 split applications, which increased the recovery of applied nitrogen in the crop, also increased the extent of acidification. In Experiment 2 ammonium sulphate tended to be more strongly acidifying than the other fertilizers but the difference was statistically significant only at the highest rate of nitrogen application. Because of the strong effects of nitrogen supply on both yield and soil pH, the highest yields were associated with end-of-season pH values below 5.0.  相似文献   

17.
Chickpea contains high levels of protein, vitamins and minerals. Acceptable chickpea yield is the result of meeting nitrogen and phosphorus requirements. The effect of appropriately meeting such requirements reflects on growth and can easily be evaluated using growth analysis. This research determined: (a) The effect of nitrogen and phosphorus fertilization on phenology, net assimilation rate, number of green leaves, leaf area, leaf area index and leaf area duration; (b) Green chickpea yield and number of pods due to fertilization; and (c) The combination of nitrogen and phosphorus fertilization that yields the most net revenue. Nitrogen and phosphorus fertilization was evaluated; each at the doses of 0, 75 and 150 kg ha–1 (N0, N75, N150; P0, P75 and P150, respectively). The combination of the levels of both nutrients generated nine combinations of treatments which were distributed in the field in a randomized complete block design in an arrangement of divided plots with four repetitions. Timing of phenological phases were similar among treatments. Nitrogen and phosphorus fertilization increased number of leaves, leaf area index, and leaf area duration that translated into increased green chickpea yield (GCY). Combinations N150-P75 and N150-P150 produced the highest GCY. The highest net revenue and revenue per peso invested was obtained with N150-P75.  相似文献   

18.
Summary Nitrogen fertilizer was applied to field plots at rates of 0, 50, 100, 150 and 200 N kg/ha yr, in order to determine the effects of differentiated N applications on drainage water and groundwater quality. Water samples, collected monthly or bimonthly from 1974 to 1983, were analysed for inorganic and total N content. In order to see the impact of residual N on leaching losses, soil samples were collected to a depth of 2 m in the N0, N100 and N200 plots, usually in September and April. Leaching of nitrate was moderate to the N100 level but increased substantially with increasing fertilization, up to 91 N kg/(ha-yr) for the highest application rate (N200), during the wet year of 1980/81. The losses were greatest during the fall, mainly due to high levels of N remaining in the soil after harvest combined with high precipitation. The N content of the groundwater did not show any significant correlation to the fertilization intensity. A buildup of inorganic N in the soil occurred only when excessive amounts of fertilizer were applied (N200), while the contents of the N0 and N100 treatments fluctuated around states of balance, approximately 45 and 70 N kg/ha respectively. Spring rape followed by winter wheat showed a great ability to reduce N contents in the tile effluent from highly fertilized plots (N150 and N200), even though the plots had received excessive amounts of fertilizer for several years. Results of this experiment in central Sweden demonstrate the importance of applying nitrogen fertilizer in balance with crop needs and of maintaining a growing crop cover as much of the time as possible in order to minimize water pollution.  相似文献   

19.
Summary Differences in N2-fixation byPhaseolus vulgaris bean cultivars were successfully evaluated in the field using15N isotope dilution technique with a non-fixing test crop of a different species (wheat). The Phaseolus cultivars could have been similarly ranked for N2-fixation capacity from either seed yield or total nitrogen yield, but the isotope method provided a direct measure of N2-fixation and made it possible to estimate the proportion of fixed to total nitrogen in the crop and in plant parts. Amounts of nitrogen fixed varied between 24.59 kg N/ha for the 60-day cultivar Goiano precoce to 64.91 kg N/ha for the 90-day cultivar Carioca. The per cent of plant nitrogen due to fixation was 57–68% for the 90-day cultivars and 37% for Goiano precoce (60-day cultivar). Fertilizer utilization was 17–30% of a 20 kg N/ha fertilizer application. 100 kg N/ha fertilizer application decreased N2-fixation without suppressing it totally. Differences in yield between the highest yielding (Carioca) and the lowest (Moruna) 90-day cultivars were also due apparently to varietal differences in efficiency of conversion of nitrogen to economic matteri.e. seed, as well as to differences in capacity of genotypes for N2-fixation. The work described here was in part supported by IAEA Research Contract No. RC/2084 UNDP/IAEA Project BRA/78/006  相似文献   

20.
Field trials were set up in the humid forest zone of Cameroon to investigate the effects of combinations of different rates of nitrogen (N) (0, 60, and 120 kg N ha(-1)) and potassium (K) (0, 80, and 160 kg K ha(-1)) applied to the soil on the incidence and damage of the noctuid stemborer Busseola fusca (Fuller), and on maize, Zea mays L., yield. Each N/K combination had an insecticide control to assess yield losses due to borers. In contrast to N, K had no effect on plant growth and borer incidence and damage. Across seasons and days after planting, total plant dry matter (DM) production increased with N level and it was 1.2-1.9 and 1.7-2.2 times, respectively, higher at 60 and 120 kg N ha(-1) compared with 0 kg N ha(-1). Total DM at harvest was strongly related to the N content of the plant at 63 d after planting. At the early growth stage, borer abundance and stem tunneling tended to increase with N level, but percentages of dead hearts did not vary with treatment. Maize grain yields increased linearly with N level, but grain yield losses decreased depending on season. Grain yield losses were 11-18.2 times higher with 0 kg N ha(-1) compared with 120 kg N ha(-1). The findings so far indicated that, soil application of N improves the nutritional status of maize, which consequently enhanced its tolerance to stemborer attacks. Improving soil fertility can thus be a very effective means of complementing integrated stemborer control in the humid forest zone of Cameroon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号