首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.  相似文献   

2.
In membranes of rat striatum, phorbol 12-myristate 13-acetate (PMA), a potent activator of Ca2+/phospholipid-dependent protein kinase, enhanced adenylate cyclase activity by counteracting the inhibition elicited by GTP. Exposure to pertussis toxin caused a similar alteration of the GTP-regulation of the enzyme activity and largely prevented the PMA effects. PMA treatment increased by threefold the GTP requirement of acetylcholine-induced inhibition of adenylate cyclase activity but did not affect the GTP-dependence of the enzyme stimulation by dopamine. The hydrolysis of GTP by membrane-bound high affinity GTPase was significantly inhibited by PMA (IC 50 10 nM) in a Ca2+-dependent manner. Like PMA, phorbol 12, 13-dibutyrate inhibited the GTPase activity, whereas the biologically inactive 4- phorbol 13-acetate and 4- phorbol were without effect. These results suggest that activation of Ca2+/phospholipid-dependent protein kinase by PMA stimulates adenylate cyclase activity by impairing the activity of the GTP-dependent inhibitory protein, possibly through a reduction of the GTP-GDP exchange.  相似文献   

3.
Abstract: 4β-Phorbol 12-myristate 13-acetate (PMA), added to a lysed mitochondrial fraction of rat striatum, stimulates adenylate cyclase activity with an apparent time lag of ~30 s. Half-maximal and maximal enzyme stimulations are obtained with 8 and 200 nM PMA, respectively. The PMA stimulation is GTP dependent, reaching a maximum of ~60% at 50 μ.M GTP, and is associated with disappearance of the enzyme inhibition induced by micromolar concentrations of GTP. Enhancement of enzyme activity by cholera toxin and 3,4-dihydroxyphenylethylamine is amplified by PMA only at micromolar concentrations of GTP. PMA does not affect the enzyme stimulation by forskolin but reverses the inhibition of forskolin-stimulated enzyme by GTP. When guanyl-5′-yl-imidodiphosphate is substituted for GTP, PMA does not modify adenylate cyclase activity. Enzyme inhibition by acetylcholine, Leu-enkephalin, and R(-)N6-(2-phenylisopropyl)adenosine is magnified by PMA. Stimulation of adenylate cyclase by PMA is markedly reduced following EGTA treatment, is not observed when adenyl-5′-yl-imidodiphosphate is substituted for ATP as substrate for adenylate cyclase, and is enhanced by l-α-phosphatidyl-l-serine. Like PMA, 4β-phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol stimulate striatal adenylate cyclase, whereas 4β-phorbol and 4β-phorbol 13-acetate are ineffective. The results indicate that phorbol esters increase striatal adenylate cyclase activity by reducing the GTP-induced inhibition of the enzyme, presumably as a result of protein kinase C activation.  相似文献   

4.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

5.
Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca(2+)-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5-15 mg/dl) for 24 h did not affect l-[(3)H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase (S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC.  相似文献   

6.
Treatment of intact human platelets with the tumour-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), specifically inhibited PGD2-induced cyclic AMP formation without affecting the regulation of cyclic AMP metabolism by PGI2, PGE1, 6-keto-PGE1, adenosine or adrenaline. This action of PMA was: (i) concentration-dependent; (ii) not mediated by evoked formation or release of endogenous regulators of adenylate cyclase activity (thromboxane A2 or ADP); (iii) mimicked by 1,2-dioctanoylglycerol (DiC8) but not by 4 alpha-phorbol 12,13-didecanoate (which does not activate protein kinase C); (iv) attenuated by Staurosporine. These results indicate that activation of protein kinase C in platelets may provide a regulatory mechanism to abrogate the effects of the endogenous adenylate cyclase stimulant PGD2 without compromising the effects of exogenous stimulants of adenylate cyclase (PGI2, 6-keto-PGE1, adenosine).  相似文献   

7.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis.  相似文献   

8.
Calcitonin gene-related peptides I and II (CGRP I and II) were found to stimulate cAMP levels by approximately 4-6 fold in human nonpigmented ciliary epithelial cells with half-maximal effective concentrations of 20 x 10(-10) and 3 x 10(-10) M, respectively. Prior exposure of cells to 6 x 10(-7) M phorbol 12-myristate, 13-acetate for 15 min resulted in a 40-50% inhibition of CGRP II-dependent cAMP stimulation. Phorbol didecanoate and dioctanoylglycerol also effectively inhibited, whereas 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C, had no effect. Staurosporine, a protein kinase C inhibitor, blocked the inhibition of cAMP formation by phorbol esters. cAMP stimulation by forskolin or cholera toxin was not inhibited by phorbol esters, suggesting that neither a Gs protein nor adenylyl cyclase is the site of inhibition by protein kinase C. These data therefore suggest that CGRP receptors are required for inhibition of adenylate cyclase by protein kinase C.  相似文献   

9.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

10.
Neurotransmitter transporters are regulated by phosphorylation but little is known about endogenous substances and receptors that regulate this process. Adenosine is an ubiquitous neuromodulator operating G-protein coupled receptors, which affect the activity of several kinases. We therefore evaluated the influence of adenosine upon the GABA transporter 1 (GAT-1) mediated GABA uptake into hippocampal synaptosomes. Removal of endogenous adenosine (adenosine deaminase, 1 U/mL) decreased GABA uptake, an effect mimicked by blockade of A2A receptors (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine, 50 nM) but not A1 or A2B receptors. A2A receptor activation (4-[2-[[6-amino-9-( N -ethyl-β- d -ribofuranuronamidosyl)-9H-purin-yl]amino]ethyl]benzenepropanoic acid hydrochloride, 3–100 nM) enhanced GABA uptake by increasing the transporter Vmax without change of KM. This was mimicked by adenylate cyclase activation (forskolin, 10 μM) and prevented by protein kinase A (PKA) inhibition ( N -[2-( p -bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride, 1 μM), which per se did not influence GABA transport. Blockade of protein kinase C (PKC) (2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide, 1 μM) facilitated GABA transport whereas PKC activation (4-β-phorbol-didecanoate, 250 nM) inhibited it. PKA blockade did not affect the facilitatory action of the PKC inhibitor or the inhibitory action of the PKC activator. However, when adenylate cyclase was activated neither activation nor inhibition of PKC affected GABA uptake. It is concluded that A2A receptors, through activation of the adenylate cyclase/cAMP/PKA transducing pathway facilitate GAT-1 mediated GABA transport into nerve endings by restraining tonic PKC-mediated inhibition.  相似文献   

11.
Signaling mechanisms that elevate cyclic AMP (cAMP) activate large-conductance, calcium- and voltage-activated potassium (BKCa) channels in pulmonary vascular smooth muscle and cause pulmonary vasodilatation. BKCa channel modulation is important in the regulation of pulmonary arterial pressure, and inhibition (closing) of the BKCa channel has been implicated in the development of pulmonary vasoconstriction. Protein kinase C (PKC) causes pulmonary vasoconstriction, but little is known about the effect of PKC on BKCa channel activity. Accordingly, studies were done to determine the effect of PKC activation on cAMP-induced BKCa channel activity using patch-clamp studies in pulmonary arterial smooth muscle cells (PASMC) of the fawn-hooded rat (FHR), a recognized animal model of pulmonary hypertension. Forskolin (10 microM), a stimulator of adenylate cyclase and an activator of cAMP, opened BKCa channels in single FHR PASMC, which were blocked by the PKC activators phorbol 12-myristate 13-acetate (100 nM) and thymeleatoxin (100 nM). The inhibitory response by thymeleatoxin on forskolin-induced BKCa channel activity was blocked by G?-6983, which selectively blocks the alpha, beta, delta, gamma, and zeta PKC isozymes, and G?-6976, which selectively inhibits PKC-alpha, PKC-beta, and PKC-mu, but not by rottlerin, which selectively inhibits PKC-delta. Collectively, these results indicate that activation of specific PKC isozymes inhibits cAMP-induced activation of the BKCa channel in pulmonary arterial smooth muscle, which suggests a unique signaling pathway to modulate BKCa channels and subsequently cAMP-induced pulmonary vasodilatation.  相似文献   

12.
Nitric oxide (NO) produced by microglia has been implicated in the pathogenesis of various central nervous system diseases; however, the intracellular signal pathways for the production of NO are not well known. Protein kinase C (PKC) plays a key role in a variety of signal transduction processes. To elucidate how PKC regulates microglial NO production, we examined the effects of PKC inhibitors on lipopolysaccharide (LPS)-stimulated NO production by primary cultured rat microglia. Staurosporine, a non-selective PKC inhibitor, increased LPS-induced production of NO at 0.1-10 nM range of concentration. Protein kinase A (PKA) inhibitor, H89, did not affect LPS-induced NO production, suggesting that staurosporine effect is not mediated by inhibition of PKA. However, other two PKC inhibitors, whose specificities for PKC isoforms were different, G?6976 and Ro-32-0432, exhibited different effects on NO production from staurosporine; the former inhibited and the latter showed no effect. Interestingly, an activator of PKC, phorbol 12-myristate 13-acetate (PMA) also increased LPS-induced production of NO at 1-10 nM range of concentration, suggesting that prolonged incubation with PMA caused down-regulation of PKC. These results indicate that the inhibition or down-regulation of some PKC isoforms causes the enhancement of NO production. The different effects of PKC inhibitors on the NO production suggest that the different PKC isoforms play different roles in regulation of NO production in microglia.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) is involved in insulin resistance. Since the fact that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit the induction of TNF-alpha by phorbol ester, but not by lipopolysaccharide (LPS), suggests two pathways to induce TNF-alpha, we investigated the mechanisms of glycated human albumin (GHA)- or phorbol ester-induced TNF-alpha in THP-1 cells. GHA induced TNF-alpha release in differentiated THP-1 cells, while phorbol ester induced TNF-alpha release in undifferentiated cells but did not induce TNF-alpha in differentiated cells. Forskolin (adenylate cyclase activator) affected more the GHA-induced TNF-alpha release than the phorbol 12-myristate 13-acetate (PMA)-induced one in undifferentiated cells. Staurosporine [protein kinase-C (PK-C) inhibitor] and PD98059 [mitogen-activated protein kinase inhibitor (MAPK)] only partially inhibited GHA-induced TNF-alpha. Catalase completely inhibited GHA-induced TNF-alpha release; however, superoxide dismutase (SOD) had no effect. These results suggest at least two pathways to induce TNF-alpha (phorbol ester- and GHA-dependent ways) and that GHA-induced TNF-alpha release is through predominantly catalase-dependent way in differentiated THP-1 cells.  相似文献   

14.
The influence of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), was studied on regulation of human platelet adenylate cyclase. Intact platelets were pretreated with the phorbol ester and, thereafter, membranes were prepared and the regulation of the hormone-sensitive adenylate cyclase in these membranes was studied. The following data were obtained: The TPA treatment applied had apparently no effect on the activity of the catalytic moiety of the platelet adenylate cyclase nor on the stimulatory NS protein nor on stimulatory hormone receptors (prostaglandin E1) and the mutual interactions of these components of the stimulatory hormone-sensitive pathway. However, the TPA treatment of intact platelets largely impaired the GTP-dependent, hormone-sensitive inhibitory pathway to the adenylate cyclase, involving the inhibitory Ni protein. The pretreatment led to a large reduction or loss of adenylate cyclase inhibition by GTP itself and by the inhibitory agonists, epinephrine and thrombin, inhibiting the untreated enzyme via separate receptors by an Ni-mediated process. In contrast, platelet adenylate cyclase inhibition not involving the Ni protein was not affected by the TPA treatment. The observed effects of TPA were very rapid in onset and were not shared by a derivative of TPA which did not activate protein kinase C. The data obtained suggest than protein kinase C activated by the phorbol ester interferes with the platelet adenylate cyclase system, leading to a specific alteration of the Ni-protein-mediated signal transduction to the adenylate cyclase.  相似文献   

15.
The tumour-promoting phorbol ester, PMA (phorbol 12-myristate 13-acetate), markedly reduced the steroidogenic response of mouse Leydig cells to stimulation by hCG and cholera toxin. However, 8Br-cAMP-and forskolin-stimulated steroidogenesis was not inhibited by PMA. PMA did not inhibit hCG-induced steroidogenesis in the simultaneous presence of 1 microM forskolin. The analysis of intracellular cAM P indicated that the PMA-induced inhibition of steroidogenesis was the result of an impaired cAMP accumulation. Adenylate cyclase in membranes prepared from PMA-treated cells showed a diminished response to hCG, GTP, guanosine 5'-[beta, gamma-imido]triphosphate [Gpp(NH)p] or to a combination of the stimulants. PMA, however, was unable to inhibit adenylate cyclase when added directly to the membrane preparation from untreated cells. As previous observations have indicated that 125I-hCG binding and phosphodiesterase activity in mouse Leydig cells are not influenced by PMA, it is concluded from the present study that the site of inhibition has to be localised to the regulatory guanine nucleotide binding protein of the adenylate cyclase system.  相似文献   

16.
Signaling mechanisms coupled to activation of different neurotransmitter receptors interact in the enteric nervous system. ACh excites myenteric neurons by activating nicotinic ACh receptors (nAChRs) and muscarinic receptors expressed by the same neurons. These studies tested the hypothesis that muscarinic receptor activation alters the functional properties of nAChRs in guinea pig small intestinal myenteric neurons maintained in primary culture. Whole cell patch-clamp techniques were used to measure inward currents caused by ACh (1 mM) or nicotine (1 mM). Currents caused by ACh and nicotine were blocked by hexamethonium (100 microM) and showed complete cross desensitization. The rate and extent of nAChR desensitization was greater when recordings were obtained with ATP/GTP-containing compared with ATP/GTP-free pipette solutions. These data suggest that ATP/GTP-dependent mechanisms increase nAChR desensitization. The muscarinic receptor antagonist scopolamine (1 microM) decreased desensitization caused by ACh but not by nicotine, which does not activate muscarinic receptors. Phorbol 12,13-dibutyrate (10-100 nM), an activator of protein kinase C (PKC), but not 4-alpha-phorbol 12-myristate 13-acetate (a PKC inactive phorbol ester), increased nAChR desensitization caused by ACh and nicotine. Forskolin (1 microM), an activator of adenylate cyclase, increased nAChR desensitization, but this effect was mimicked by dideoxyforskolin, an adenylate cyclase inactive forskolin analog. These data indicate that simultaneous activation of nAChRs and muscarinic receptors increases nAChR desensitization. This effect may involve activation of a PKC-dependent pathway. These data also suggest that nAChRs and muscarinic receptors are coupled functionally through an intracellular signaling pathway in myenteric neurons.  相似文献   

17.
18.
Release of eicosanoids is an important response of macrophages to inflammation and bacterial infection. At low concentrations, bacterial lipopolysaccharide (1-2 micrograms/ml) fails to stimulate eicosanoid release in resident peritoneal macrophages but primes the macrophages for a greatly enhanced release of eicosanoids on stimulation with the calcium ionophore A23187 (0.1 microM) or with phorbol 12-myristate 13-acetate (50 nM), an activator of protein kinase C. Incubation of macrophages with Bordetella pertussis toxin, prior to priming with lipopolysaccharide, inhibited the release of both cyclooxygenase and lipoxygenase products upon A23187 stimulation. Pertussis toxin treatment of macrophages had no effect on eicosanoid release when the stimulus was phorbol 12-myristate 13-acetate. The presence of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an effective inhibitor of protein kinase C, during lipopolysaccharide priming and subsequent stimulation significantly inhibited eicosanoid release when phorbol 12-myristate 13-acetate was the stimulus, but did not affect eicosanoid release stimulated by A23187. Based on these results, at least two mechanisms, distinguished by apparent differences in sensitivity to pertussis-toxin-sensitive, guanine-nucleotide-binding proteins and protein kinase C, are involved in eicosanoid secretion by lipopolysaccharide-activated macrophages in response to A23187 and phorbol 12-myristate 13-acetate.  相似文献   

19.
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-alpha and PKC-lambda/zeta, but not of PKC-delta, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-alpha and exogenous PKC-delta but not atypical PKC-lambda/zeta. Insulin also activated the overexpressed PKC-delta but not PKC-alpha. Expression of the wild-type PKC-alpha or PKC-delta resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-alpha expression, which inhibited the PMA activation of PKC-alpha, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-delta but not of PKC-alpha. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-lambda/zeta was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.  相似文献   

20.
Steroidogenesis in teleost fish, as in other vertebrate groups, is mediated by the activation of adenylate cyclase. For the present studies, calcium ionophore A23187 and either phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl-2-acetylglycerol (OAG) were used to investigate the possible roles that changes in intracellular calcium content and protein kinase C activation play in steroid production by goldfish preovulatory ovarian follicles incubated in vitro. While ineffective alone, PMA (1.6-400 nM) and OAG (25-100 micrograms/ml) exhibited classical synergism with A23187 (1.0-10 microM), leading to increased testosterone production. The magnitude of these responses was at least tenfold lower than that obtained with human chorionic gonadotropin (hCG), forskolin, or dibutyryl cyclic adenosine 3',5'-monophosphate. Testosterone production stimulated by hCG and forskolin was blocked by addition of PMA but not OAG. Unlike PMA, the inactive phorbol ester 4 alpha-phorbol 12,13-dideconate did not influence basal or stimulated testosterone production. A23187 had a biphasic effect on stimulated testosterone production: a dosage of 0.25 or 1.0 microM potentiated the action of submaximally effective dosages of hCG or forskolin on testosterone production; a higher dosage of 4 microM inhibited stimulated testosterone production by up to 50%. In conclusion, these studies suggest that, in addition to the adenylate cyclase second messenger system, changes in intracellular calcium and activation of protein kinase C may modulate steroidogenesis in goldfish ovarian follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号