首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The obese Zucker rat is resistant to insulin for glucose disposal, but it is unknown whether this insulin resistance is accompanied by alterations of insulin-mediated muscle protein synthesis. We examined rates of muscle protein synthesis either with or without insulin in lean and obese Zucker rats with the use of a bilateral hindlimb preparation. Additional experiments examined insulin's effect on protein synthesis with or without rapamycin, an inhibitor of protein synthesis. Protein synthesis in red and white gastrocnemius was stimulated by insulin compared with control (no insulin) in obese (n = 10, P<0.05) but not in lean (n = 10, P>0.05) Zucker rats. In white gastrocnemius, rapamycin significantly reduced rates of protein synthesis compared with control in lean (n = 6) and obese (n = 6) rats; however, in red gastrocnemius, the attenuating effect of rapamycin occurred only in obese rats. The addition of insulin to rapamycin resulted in rates of synthesis that were similar to those for rapamycin alone for lean rats and to those for insulin alone (augmented) for obese rats in both tissues. Our results demonstrate that insulin enhances protein synthesis in muscle that is otherwise characterized as insulin resistant. Furthermore, rapamycin inhibits protein synthesis in muscle of obese Zucker rats; however, stimulation of protein synthesis by insulin is not via a rapamycin-sensitive pathway.  相似文献   

2.
Uncoupling protein-3 (UCP3), a mitochondrial carrier protein predominantly expressed in muscle, has been suggested to release stored energy as heat. The insulin-sensitizing thiazolidinediones enhance glucose disposal in skeletal muscle and have been reported to increase the expression of uncoupling proteins in various experimental systems. We therefore studied the effect of troglitazone treatment on UCP3 gene expression in muscles from lean and obese Zucker rats. In comparison with obese littermates, basal UCP3 mRNA levels in lean Zucker rats tended to be higher in white and red gastrocnemius muscles, but were lower in soleus (P<0.001) muscle and heart (P<0.01). In lean rats, troglitazone significantly increased UCP3 gene expression in white and red gastrocnemius and heart muscles (all P<0.01). In contrast, the drug reduced UCP3 mRNA expression in red gastrocnemius and soleus muscles of obese littermates (all P<0.001). The troglitazone-dependent decrease in UCP3 gene expression was accompanied by an increased weight gain in obese rats, while no such effect was observed in lean rats. In obese rats, improvement of insulin resistance by troglitazone was associated with increased rates of basal and insulin-stimulated CO(2) production from glucose measured in soleus muscle. These studies demonstrate that effects of troglitazone on UCP3 gene expression depend on the phenotype of Zucker rats and that troglitazone-induced metabolic improvements are not related to increased uncoupling resulting from upregulation of UCP3 mRNA expression in muscle.  相似文献   

3.
The rates of muscle glucose uptake of lean and obese Zucker rats were assessed via hindlimb perfusion under basal conditions (no insulin), in the presence of a maximal insulin concentration (10 mU/ml), and after electrically stimulated muscle contraction in the absence of insulin. The perfusate contained 28 mM glucose and 7.5 microCi/mmol of 2-deoxy-D-[3H-(G)]glucose. Glucose uptake rates in the soleus (slow-twitch oxidative fibers), red gastrocnemius (fast-twitch oxidative-glycolytic fibers), and white gastrocnemius (fast-twitch glycolytic fibers) under basal conditions and after electrically stimulated muscle contraction were not significantly different between the lean and obese rats. However, the rate of glucose uptake during insulin stimulation was significantly lower for obese than for lean rats in all three fiber types. Significant correlations were found for insulin-stimulated glucose uptake and glucose transporter protein isoform (GLUT-4) content of soleus, red gastrocnemius, and white gastrocnemius of lean (r = 0.79) and obese (r = 0.65) rats. In contrast, the relationships between contraction-stimulated glucose uptake and muscle GLUT-4 content of lean and obese rats were negligible because of inordinately low contraction-stimulated glucose uptakes by the solei. These results suggest that maximal skeletal muscle glucose uptake of obese Zucker rats is resistant to stimulation by insulin but not to contractile activity. In addition, the relationship between contraction-stimulated glucose uptake and GLUT-4 content appears to be fiber-type specific.  相似文献   

4.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

5.
Earlier studies have shown that whole body adenosine receptor antagonism increases skeletal muscle insulin sensitivity in insulin-resistant Zucker rats. To find which steps in the insulin signaling pathway are influenced by adenosine receptors, muscle from lean and obese Zucker rats, treated for 1 week with the adenosine receptor antagonist, 1,3-dipropyl-8-(4-acrylate)-phenylxanthine (BWA1433), were analyzed. All rats were first anesthetized and injected intravenously (i.v.) with 1 IU of insulin. About 3 min later the gastrocnemius was freeze clamped. Insulin receptors were partially purified on wheat germ agglutinin (WGA) columns and insulin receptor kinase activity measured in control and BWA1433-treated lean and obese Zucker rats. Protein tyrosine phosphatase (PTPase) activity was also analyzed in subcellular fractions, including the cytosolic fraction, a high-speed particulate fraction and the insulin receptor fraction eluted from WGA columns. Administration of BWA1433 increased insulin receptor kinase activity in obese but not lean Zucker rats. PTPase activities were higher in the untreated obese rat muscle particulate fractions than in the lean rat particulate fractions. The BWA1433 administration lowered the PTPase activity of the obese rats but not the lean rats. Although the PTPase activity in WGA eluate fractions containing crude insulin receptors were similar in lean and obese animals, BWA1433 administration was found to lower the PTPase activities in the fractions obtained from obese but not from the lean rats. PTPases may be upregulated in muscles from obese rats due to activated adenosine receptors. Adenosine receptor blockade, by reducing PTPase activity, may thereby increase insulin signaling.  相似文献   

6.
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle.  相似文献   

7.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

8.
We have shown previously that the antioxidant alpha-lipoic acid (ALA) can stimulate glucose transport and can enhance the stimulation of this process by insulin in skeletal muscle from insulin-resistant obese Zucker rats. As insulin can also acutely activate general protein synthesis and inhibit net protein degradation in skeletal muscle, we hypothesized that ALA could directly affect protein turnover and also increase the effect of insulin on protein turnover in isolated skeletal muscle from developing obese Zucker rats. In epitrochlearis muscles isolated from obese Zucker rats, insulin (2 mU/ml) significantly (p < 0.05) increased in vitro protein synthesis (phenylalanine incorporation into protein) and decreased net protein degradation (tyrosine release), whereas a racemic mixture of ALA (2 mM) had no effect on either process. Interestingly, rates of protein synthesis in muscle from obese Zucker rats were substantially lower compared to those values observed in age-matched insulin-sensitive Wistar rats, whereas rates of protein degradation were comparable. Obese Zucker rats were also treated chronically with either vehicle or ALA (50 mg/kg/d for 10 d). Again, insulin significantly increased net protein synthesis and decreased net protein degradation in epitrochlearis muscles isolated from vehicle-treated obese Zucker rats; however, this stimulatory effect of insulin was not improved by prior in vivo ALA treatment. These results indicate that the previously described effect of the antioxidant ALA to increase insulin-stimulated glucose transport in skeletal muscle of obese, insulin-resistant rats does not apply to another important insulin-regulatable process, protein turnover. These findings imply that the cellular mode of action for ALA is restricted to signaling factors unique to the activation of glucose transport, and does not involve the pathway of stimulation of general protein synthesis and net protein degradation.  相似文献   

9.
Past studies have suggested that the stress-induced GLUT4 localization pathway is damaged in fast-twitch muscles (white muscles) of obese subjects. In this study, we used obese rodents in an attempt to determine whether the stress-induced GLUT4 localization pathway is abnormal in slow-twitch muscles (red muscles), which are responsible for most daily activities. Protein expression levels of the intracellular stress sensor AMP-activated protein kinase (AMPK), its upstream kinase LKB1, its downstream protein AS160 and the glucose transporter protein 4 (GLUT4) in the red gastrocnemius muscle were measured under either resting or stress conditions (1 h of swimming or 14% hypoxia) in both lean and obese Zucker rats (n = 7 for each group). At rest, obese rats displayed higher fasting plasma insulin levels and increased muscle AMPK and AS160 phosphorylation levels compared with lean controls. No significant difference was found in the protein levels of LKB1, total GLUT4, or membrane GLUT4 between the obese and lean control groups. After one hour of swimming, AMPK and AS160 phosphorylation levels and the amount of GLUT4 translocated to the plasma membrane were significantly elevated in lean rats but remained unchanged in obese rats relative to their resting conditions. One hour 14% hypoxia did not cause significant changes in the LKB1-AMPK-AS160-GLUT4 pathway in either lean or obese rats. This study demonstrated that the AMPK-AS160-GLUT4 pathway was altered at basal levels and after exercise stimulation in the slow-twitch muscle of obese Zucker rats.  相似文献   

10.
There is good evidence from cell lines and rodents that elevated protein kinase C (PKC) overexpression/activity causes insulin resistance. Therefore, the present study determined the effects of PKC activation/inhibition on insulin-mediated glucose transport in incubated human skeletal muscle and primary adipocytes to discern a potential role for PKC in insulin action. Rectus abdominus muscle strips or adipocytes from obese, insulin-resistant, and insulin-sensitive patients were incubated in vitro under basal and insulin (100 nM)-stimulated conditions in the presence of GF 109203X (GF), a PKC inhibitor, or 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), a PKC activator. PKC inhibition had no effect on basal glucose transport. GF increased (P < 0.05) insulin-stimulated 2-deoxyglucose (2-DOG) transport approximately twofold above basal. GF plus insulin also increased (P < 0.05) insulin receptor tyrosine phosphorylation 48% and phosphatidylinositol 3-kinase (PI 3-kinase) activity approximately 50% (P < 0.05) vs. insulin treatment alone. Similar results for GF on glucose uptake were observed in human primary adipocytes. Further support for the hypothesis that elevated PKC activity is related to insulin resistance comes from the finding that PKC activation by dPPA was associated with a 40% decrease (P < 0.05) in insulin-stimulated 2-DOG transport. Incubation of insulin-sensitive muscles with GF also resulted in enhanced insulin action ( approximately 3-fold above basal). These data demonstrate that certain PKC inhibitors augment insulin-mediated glucose uptake and suggest that PKC may modulate insulin action in human skeletal muscle.  相似文献   

11.
The aim of our work was to investigate a possible role of protein kinase C (PKC) in insulin-stimulated glucose uptake in mouse skeletal muscle, and to search for a defect in PKC activation in insulin resistance found in obesity. In isolated soleus muscle of lean mice, insulin (100 nM) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (1 microM) acutely stimulated glucose uptake 3- and 2-fold respectively. The effects of insulin and TPA were not additive. When PKC activity was down-regulated by long-term (24 h) TPA pretreatment, before measurement of glucose transport, the TPA effect was abolished, but in addition insulin-stimulated glucose transport returned to basal values. Furthermore, polymyxin B, which inhibits PKC in muscle extracts, prevented insulin-stimulated glucose uptake in muscle. In muscle of obese insulin-resistant mice, glucose uptake evoked by insulin was decreased, whereas the TPA effect, expressed as a fold increase, was unaltered. Thus both agents stimulated glucose transport to the same extent. Furthermore, no difference was observed when PKC activation by TPA was measured in muscle from lean and obese mice. These results suggest that: (1) PKC is involved in the insulin effect on glucose transport in muscle; (2) PKC activation explains only part of the insulin stimulation of glucose transport; (3) the defect in insulin response in obese mice does not appear to be due to an alteration in the PKC-dependent component of glucose transport. We propose that insulin stimulation of glucose uptake occurs by a sequential two-step mechanism, with first translocation of transporters to the plasma membrane, which is PKC dependent, and second, activation of the glucose transporters. In obesity only the activation step was decreased, whereas the translocation step was unaltered.  相似文献   

12.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

13.
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results.  相似文献   

14.
The mechanism for hyperresponsive insulin-mediated glucose transport in adipose cells from 30-day-old obese Zucker rats was examined. Glucose transport was assayed by measuring 3-O-methylglucose transport, and the concentration of glucose transporters was estimated by measuring specific D-glucose-inhibitable cytochalasin B binding. Insulin increased glucose transport activity by approximately 17 fmol/cell/min in cells from obese rats compared to 3 fmol/cell/min in lean littermates. Insulin increased the concentration of glucose transporters in the plasma membrane fraction by about 15 pmol/mg of membrane protein in both groups. The insulin-mediated decrease in the concentration of transporters in the low-density microsomal fraction was 30 pmol/mg of membrane protein for the obese rats compared to 15 pmol/mg of membrane protein for the lean controls. An estimated number of glucose transporters was calculated using membrane protein and enzyme recoveries for each group. Insulin increased the number of transporters in the plasma membrane by 3 X 10(6) sites/cell for the obese rats and only 0.6 X 10(6) sites/cell for the lean controls. In addition, insulin decreased the number of transporters/cell in the intracellular membrane pool by approximately 4 X 10(6) sites/cell for the obese rats and 0.9 X 10(6) sites/cells for the lean rats. The total number of transporters/cell was about 7 X 10(6) sites/cell for the obese animals and 1.6 X 10(6) sites/cell for the lean controls. In the basal state, more than 80% of these transporters were located in the intracellular pool for both the lean and obese rats. Thus, the marked hyperresponsive insulin-mediated glucose transport observed in adipose cells from 30-day-old obese Zucker rats may be the consequence of a marked increase in the number of glucose transporters in the intracellular pool.  相似文献   

15.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

16.
The purpose of the present study was to compare the carbohydrate use of insulin-resistant obese Zucker rats with that of their lean littermates during steady-state exercise. Obese and lean rats were randomly assigned to a sedentary group or to a run group in which rats ran at 72-73% of their maximal O2 consumption, with the duration of exercise set to require an energy expenditure of 2.1-2.2 kcal. During the run the respiratory exchange ratio was significantly higher in the obese than in the lean rats [0.94 +/- 0.01 (SE) and 0.86 +/- 0.01, respectively], which indicate that the obese rats required 54% more carbohydrate than the lean rats. Total muscle glycogen utilization in the soleus, plantaris, and red and white gastrocnemius was not different between groups. Obese rats had total liver glycogen values five times greater than those of lean rats (833.38 +/- 101.4 and 152.8 +/- 37.5 mg, respectively) and utilized twice as much liver glycogen as their lean littermates (193.5 and 90.4 mg, respectively). The obese rats exhibited higher blood glucose and insulin concentrations than the lean rats during the run. These findings indicate that, despite their characteristic insulin resistance, the obese Zucker rats had a greater dependency on carbohydrate as a substrate during exercise than their lean littermates and that the major source of this carbohydrate was liver glycogen.  相似文献   

17.
Previous studies have shown that the synthesis of renal cytochrome P-450 (CYP)-derived eicosanoids is downregulated in genetic or high-fat diet-induced obese rats. Experiments were designed to determine whether fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist, would induce renal eicosanoid synthesis and improve endothelial function in obese Zucker rats. Administration of fenofibrate (150 mg.kg(-1).day(-1) for 4 wk) significantly reduced plasma insulin, triglyceride, and total cholesterol levels in obese Zucker rats. CYP2C11 and CYP2C23 proteins were downregulated in renal vessels of obese Zucker rats. Consequently, renal vascular epoxygenase activity decreased by 15% in obese Zucker rats compared with lean controls. Chronic fenofibrate treatment significantly increased renal cortical and vascular CYP2C11 and CYP2C23 protein levels in obese Zucker rats, whereas it had no effect on epoxygenase protein and activity in lean Zucker rats. Renal cortical and vascular epoxygenase activities were consequently increased by 54% and 18%, respectively, in fenofibrate-treated obese rats. In addition, acetylcholine (1 microM)-induced vasodilation was significantly reduced in obese Zucker kidneys (37% +/- 11%) compared with lean controls (67% +/- 9%). Chronic fenofibrate administration increased afferent arteriolar responses to 1 microM of acetylcholine in obese Zucker rats (69% +/- 4%). Inhibition of the epoxygenase pathway with 6-(2-propargyloxyphenyl)hexanoic acid attenuated afferent arteriolar diameter responses to acetylcholine to a greater extent in lean compared with obese Zucker rats. These results demonstrate that the PPAR-alpha agonist fenofibrate increased renal CYP-derived eicosanoids and restored endothelial dilator function in obese Zucker rats.  相似文献   

18.
The effect of phorbol myristate acetate (PMA) on the hormonal responsiveness of hepatocytes from lean and obese Zucker rats was studied. Phenylephrine-stimulated phosphatydylinositol labeling and phosphorylase activation were antagonized by PMA in cells from obese and lean animals; bigger residual effects were observed in cells from obese animals even at high PMA concentrations. Cyclic AMP accumulation induced by isoproterenol, glucagon, forskolin and cholera toxin was higher in cells from lean animals than in those from obese rats. PMA diminished glucagon- and cholera toxin-induced cyclic AMP accumulation; cells from lean animals were more sensitive to PMA. Two groups of isoforms of protein kinase C (PKC) were observed in hepatocytes from Zucker rats using DEAE-cellulose column chromatography: PKC 1 and PKC 2. The PKC 1 isozymes were separated into four peaks using hydroxylapatite: aa, 1a (PKC-beta), 1b (PKC-alpha) and 1c. Short treatment with PMA decreased the activity of PKC 1 (peaks 1b (PKC-alpha) and 1c) and to a lesser extent of PKC 2; cells from lean animals were more sensitive to PMA than those obtained from obese rats. Our results indicate that cells from genetically obese Zucker rats are in general less sensitive to this activator of protein kinase C than those from their lean littermates. The possibility that alterations in the phosphorylation/dephosphorylation cycles, that control metabolism and hormonal responsiveness, may contribute to this obese state is suggested.  相似文献   

19.
Compared with the lean(Fa/) genotype, obese(fa/fa) Zucker rats have arelative deficiency of muscle phospholipid arachidonate, and skeletalmuscle arachidonate in humans is positively correlated with insulinsensitivity. To assess the hypothesis that the positive effects ofexercise training on insulin sensitivity are mediated by increasedmuscle arachidonate, we randomized 20 lean and 20 obese weanling maleZucker rats to sedentary or treadmill exercise groups. After 9 wk,fasting serum, three skeletal muscles (white gastrocnemius, soleus, andextensor digitorum longus), and heart were obtained. Fasting insulinwas halved by exercise training in the obese rat. In whitegastrocnemius and extensor digitorum longus (fast-twitch muscles), butnot in soleus (a slow-twitch muscle) or heart, phospholipidarachidonate was lower in obese than in lean rats(P < 0.001). In all muscles,exercise in the obese rats reduced arachidonate(P < 0.03, by ANOVA contrast). Weconclude that improved insulin sensitivity with exercise in the obesegenotype is not mediated by increased muscle arachidonate and thatreduced muscle arachidonate in obese Zucker rats is unique tofast-twitch muscles.

  相似文献   

20.
Skeletal muscle is insulin resistant in the obese Zucker rat. Endurance training reduces muscle insulin resistance, but the effects of a single acute exercise session on muscle insulin resistance in the obese Zucker rat are unknown. Therefore, insulin responsiveness of muscle glucose uptake was measured in 15-week-old obese rats either 1, 48, or 72 hours after two hours of intermittent exercise (3030 min; work:rest). Hindlimbs of sedentary lean (LS) and obese (OS) rats and exercised obese (OE) rats were perfused after a 10-hour fast under both basal (0 mU.ml?1) and maximal (20 mU.ml?1) insulin concentrations to measure net glucose uptake. Insulin responsiveness of net glucose uptake was significantly reduced in OS compared to LS (8.5 ± 1.6 vs 15.3 ± 2.0 μmol.g?1.h?1, respectively). Compared to OS, insulin responsiveness of net glucose uptake was significantly increased by 56% and 80% at 1 hour and 48 hours after acute exercise. However, 72 hours after acute exercise, the increased insulin responsiveness of net glucose uptake was no longer evident. These results indicate that improved responsiveness of muscle glucose uptake persists for at least 48 hours after two hours of acute intermittent exercise in 15-week-old obese Zucker rats. (OBESITY RESEARCH 1993; 1:295–302)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号