首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatases are signalling molecules that regulate a variety of fundamental cellular processes including cell growth, metabolism and apoptosis. The aim of this work was to correlate the cytotoxicity of pervanadate and okadaic acid on HL60 cells and their effect on the phosphatase obtained from these cells. The cytotoxicity of these protein phosphatase inhibitors was evaluated on HL60 cells using phosphatase activity, protein quantification and MTT reduction as indices. The major phosphatase presents in the cellular extract showed high activity (80%) and affinity (Km=0.08?mM) to tyrosine phosphate in relation to p-nitrophenyl phosphate (pNPP)—(Km=0.51?mM). Total phosphatase (pNPP) was inhibited in the presence of 10?mM vanadate (98%), 200?μM pervanadate (95%) and 100?μM p-chloromercuribenzoate (80%) but okadaic acid caused a slight increase in enzyme activity (25%). When the HL60 cells were treated with the phosphatase inhibitors (pervanadate and okadaic acid) for 24?hours, only 20% residual activity was observed in presence of 200?μM pervanadate, whereas in the presence of okadaic acid this inhibitory effect was not observed. However, in respect to mitochondrial function, cell viability decreased about 80% in the presence of 100?nM okadaic acid. The total protein content was decreased 25% when the cells were treated with 100?nM okadaic acid in combination with 200?μM pervanadate. Our results suggest that both phosphatase inhibitors presented different mechanisms of action on HL60 cells. However, their effect on the cell redox status have to be considered.  相似文献   

2.
Calyculin A and okadaic acid: inhibitors of protein phosphatase activity   总被引:44,自引:0,他引:44  
Calyculin A and okadaic acid induce contraction in smooth muscle fibers. Okadaic acid is an inhibitor of phosphatase activity and the aims of this study were to determine if calyculin A also inhibits phosphatase and to screen effects of both compounds on various phosphatases. Neither compound inhibited acid or alkaline phosphatases, nor the phosphotyrosine protein phosphatase. Both compounds were potent inhibitors of the catalytic subunit of type-2A phosphatase, with IC50 values of 0.5 to 1 nM. With the catalytic subunit of protein phosphatase type-1, calyculin A was a more effective inhibitor than okadaic acid, IC50 values for calyculin A were about 2 nM and for okadaic acid between 60 and 500 nM. The endogenous phosphatase of smooth muscle myosin B was inhibited by both compounds with IC50 values of 0.3 to 0.7 nM and 15 to 70 nM, for calyculin A and okadaic acid, respectively. The partially purified catalytic subunit from myosin B had IC50 values of 0.7 and 200 nM for calyculin A and okadaic acid, respectively. The pattern of inhibition for the phosphatase in myosin B therefore is similar to that of the type-1 enzyme.  相似文献   

3.
Okadaic acid, a selective inhibitor of serine/threonine protein phosphatases, was utilized to investigate the requirement for phosphatases in cell cycle progression of GH4 rat pituitary cells. Okadaic acid inhibited GH4 cell proliferation in a concentration-dependent manner with a half-maximal inhibition (IC50) of approximately 5 nM. Treatment of GH4 cells with 10 nM okadaic acid resulted in a 40-60% decrease in phosphatase activity and an increase in the proportion of phosphorylated retinoblastoma (RB) protein. Cell cycle analysis indicated that okadaic acid increased the percentage of cells in G2-M, decreased proportionally the percentage of cells in G1 phase, and had little effect on the percentage of cells in S-phase. The absence of a change in the proportion of S-phase cells indicates that G1-specific phosphatases responsible for dephosphorylation of RB protein were not inhibited by 10 mM okadaic acid. Mitotic index revealed that 10 nM okadaic acid decreased proliferation of GH4 cells specifically by slowing the progression through mitosis. Immunostaining with anti-tubulin demonstrated that 10 nM okadaic acid-treated mitotic cells contained mitotic spindles; however, the spindle apparatus in these cells frequently contained multiple poles. These results suggest that the organization of spindle microtubules during prometaphase requires a protein phosphatase that is sensitive to nanomolar concentrations of okadaic acid. Chromosomes in 10 nM okadaic acid-treated cells appear to be attached to spindle microtubules and the nuclear envelope is absent. The effects of okadaic acid on the spindle differ from those elicited by the calcium channel blocker, nimodipine, indicating that this okadaic acid sensitive phosphatase is not part of the calcium signalling events which participate in mitotic progression.  相似文献   

4.
The Meiothermus ruber alkaline phosphatase gene was cloned, expressed in Escherichia coli cells, and sequenced. The enzyme precursor, including the putative signal peptide, was shown to consist of 503 residues (deduced molecular mass 54,229 Da). The recombinant enzyme showed the maximal activity at 60-65 degrees C and pH 11.0 and had K(m) = 0.055 mM as estimated with p-nitrophenyl phosphate (pNPP). The enzyme proved to be moderately thermostable, retaining 50% activity after 6 h incubation at 60 degrees C and being completely inactivated in 2 h at 80 degrees C. In substrate specificity assays, the highest enzymic activity was observed with pNPP and dATP. Vanadate, inorganic phosphate, and SDS inhibited M. ruber alkaline phosphatase, while thiol-reducing agents had virtually no effect. The enzymic activity strongly depended on exogenous Mg2+ and declined in the presence of EDTA.  相似文献   

5.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

6.
Four structurally different protein phosphatases (PPs) inhibitors - fluoride, calyculin A, okadaic acid and cantharidin--were tested for their ability to modulate unidirectional Na(+) influx in rat red blood cells. Erythrocytes were incubated at 37 degrees C in isotonic and hypertonic media containing 1 mM ouabain and (22)Na in the absence or presence of PP inhibitors. Exposure of the cells to 20 mM fluoride or 50 nM calyculin A for 1 h under isosmotic conditions caused a significant stimulation of Na(+) influx, whereas addition of 200 microM cantharidin or 100 nM okadaic acid had no effect. After 2 h of treatment, however, all these PPs blockers significantly enhanced Na(+) transport in rat erythrocytes. Selective inhibitors of PP-1 and PP-2A types, calyculin A, cantharidin and okadaic acid, produced similar ( approximately 1.2-1.4-fold) stimulatory effects on Na(+) influx in the cells. Activation of Na(+) influx was unchanged with increasing calyculin A concentration from 50 to 200 nM. No additive stimulation of Na(+) influx was observed when the cells were treated with combination of 20 mM fluoride and 50 nM calyculin A. Na(+) influx induced by PPs blockers was inhibited by 1 mM amiloride and 200 muM bumetanide approximately in the equal extent, indicating the involvement of Na(+)/H(+) exchange and Na-K-2Cl cotransport in sodium transport through rat erythrocytes membrane. Activation of Na(+) transport in the cells induced by calyculin A and fluoride was associated with increase of intracellular Na(+) content. Shrinkage of the rat erythrocytes resulted in 2-fold activation of Na(+) influx. All tested PPs inhibitors additionally activated the Na(+) influx by 70-100% above basal shrinkage-induced level. Amiloride and bumetanide have diminished both the shrinkage-induced and PPs-inhibitors-induced Na(+) influxes. Thus, our observations clearly indicate that activities of Na(+)/H(+) exchanger and Na-K-2Cl cotransporter in rat erythrocytes are regulated by protein phosphatases and stimulated when protein dephosphorylation is inhibited.  相似文献   

7.
Phosphatase inhibitors microcystin-LR, tautomycin, and okadaic acid caused contraction and increased 20-kDa myosin light chain (MLC20) phosphorylation in Ca(2+)-free solutions in both phasic and tonic smooth muscle permeabilized with beta-escin, and inhibited the heavy meromyosin (HMM) phosphatase activity of smooth muscle homogenates with the same potency sequence: microcystin-LR greater than tautomycin greater than okadaic acid. The sensitivity to all three inhibitors was significantly higher, the half-times of relaxation and dephosphorylation were 4-6 times longer, and the HMM phosphatase and MLC20 kinase activity/smooth muscle cell wet weight was 2.0- and 1.9-fold lower in the tonic, femoral artery, than in the phasic, ileum or portal vein, smooth muscle. Preincubation with 0.2 microM inhibitor-2 decreased the HMM phosphatase activity by 35% in the ileum and by 60% in the femoral artery. The results suggest that the HMM phosphatases of smooth muscle have properties common to type 1 protein phosphatases, but are inhibited only partially by high concentrations of inhibitor-2, and that the lower HMM phosphatase activity of tonic smooth muscle may contribute to its greater sensitivity to phosphatase inhibitors and its slower rate of relaxation.  相似文献   

8.
A protein phosphatase and phosphatase inhibitors were used to examine the role of protein phosphorylation in the regulation of norepinephrine secretion in digitonin-permeabilized bovine chromaffin cells. Addition of okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, or 1-naphthylphosphate, a more general phosphatase inhibitor, to digitonin-permeabilized chromaffin cells caused about a 100% increase in the amount of norepinephrine secreted in the absence of Ca2+ (in 5 mM EGTA) without affecting the amount of norepinephrine secreted in the presence of 10 microM free Ca2+. This stimulation of norepinephrine secretion by protein phosphatase inhibitors suggests that in the absence of Ca2+ there is a slow rate phosphorylation and that this phosphorylation triggers secretion. Addition of an exogenous type 2A protein phosphatase caused almost a 50% decrease in Ca(2+)-dependent norepinephrine secretion. Thus, the amounts of norepinephrine released both in the absence of Ca2+ and in the presence of Ca2+ appear to depend upon the level of protein phosphorylation.  相似文献   

9.
K M Lerea 《Biochemistry》1991,30(28):6819-6824
The involvement of protein phosphatases in regulating platelet activation was studied. The major portion of the phosphorylase phosphatase activity found in platelet lysates appears to be of the type 1 variety. The identification of this enzyme was based on the finding that greater than 80% of protein phosphatase activity was inhibited by the heat-stable inhibitor protein inhibitor 2 and, while only 20% of the phosphorylase phosphatase activity in platelet extracts was inhibited by 2 nM okadaic acid, greater than 95% of the activity was inhibited in the presence of 1 microM okadaic acid. Increases in protein phosphorylations occurred and thrombin-induced release of serotonin was prevented as a result of artificially inhibiting the enzyme with okadaic acid in intact platelets. This implies either that the regulation of okadaic acid sensitive protein phosphatases is necessary for some agonist-induced effects or that okadaic acid sensitive phosphatases are required for maintaining platelets in a responsive state.  相似文献   

10.
The effects of the protein phosphatase inhibitors calyculin A and okadaic acid on Na(+)/Ca(2+) exchange activity were examined in transfected Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger. Incubating the cells for 5-10 min with 100 nM calyculin A reduced exchange-mediated (45)Ca(2+) uptake or Ba(2+) influx by 50-75%. Half-maximal inhibition of (45)Ca(2+) uptake was observed at 15 nM calyculin A. The nonselective protein kinase inhibitors K252a and staurosporine provided partial protection against the effects of calyculin A. Okadaic acid, another protein phosphatase inhibitor, nearly completely blocked exchange-mediated Ba(2+) influx. Chinese hamster ovary cells expressing a mutant exchanger in which 420 out of 520 amino acid residues were deleted from the central hydrophilic domain of the exchanger remained sensitive to the inhibitory effects of calyculin A and okadaic acid. Surprisingly, Na(o)(+)-dependent Ca(2+) efflux appeared to be only modestly inhibited, if at all, by calyculin A or okadaic acid. We conclude that protein hyperphosphorylation during protein phosphatase blockade selectively inhibits the Ca(2+) influx mode of Na(+)/Ca(2+) exchange, probably by an indirect mechanism that does not involve phosphorylation of the exchanger itself.  相似文献   

11.
The Arabidopsis thaliana type 1 protein phosphatase (PP1) catalytic subunit was released from its endogenous regulatory subunits by ethanol precipitation and purified by anion exchange and microcystin affinity chromatography. The enzyme was identified by MALDI-TOF mass spectrometry from a tryptic digest of the purified protein as a mixture of PP1 isoforms (TOPP 1-6) indicating that at least 4-6 of the eight known PP1 proteins are expressed in sufficient quantities for purification from A. thaliana suspension cells. The enzyme had a final specific activity of 8950 mU/mg using glycogen phosphorylase a as substrate, had a subunit molecular mass of 35 kDa as determined by SDS-PAGE and behaved as a monomeric protein of approx. 39 kDa on Superose 12 gel filtration chromatography. Similar to the mammalian type 1 protein phosphatases, the A. thaliana enzyme was potently inhibited by Inhibitor-2 (IC(50)=0.65 nM), tautomycin (IC(50)=0.06 nM), microcystin-LR (IC(50)=0.01 nM), nodularin (IC(50)=0.035 nM), calyculin A (IC(50)=0.09 nM), okadaic acid (IC(50)=20 nM) and cantharidin (IC(50)=60 nM). The enzyme was also inhibited by fostriecin (IC(50)=22 microM), NaF (IC(50)=2.1 mM), Pi (IC(50)=9.5 mM), and PPi (IC(50)=0.07 mM). Purification of the free catalytic subunit allowed it to be used to probe protein phosphatase holoenzyme complexes that were enriched on Q-Sepharose and a microcystin-Sepharose affinity matrix and confirmed several proteins to be PP1 targeting subunits.  相似文献   

12.
In Escherichia coli, the physiological conditions governing the expression of an acid phosphatase with an optimum pH of 2.5 were determined. By contrast with most enzymes, the synthesis of this phosphatase was turned off in exponentially growing bacteria and started as soon as cultures entered the stationary phase. A starvation for inorganic phosphate resulted in a premature full induction, while carbon, nitrogen, and sulfur limitations were inefficient. In the presence of nonlimiting amounts of inorganic phosphate, however, the transfer of the culture to anaerobic conditions led to an immediate accumulation of the acid phosphatase. Cyclic AMP exerted a strong negative control on the biosynthesis and of this enzyme for which the integrity of both the cya and the crp gene functions was necessary. The acid phosphatase was purified to apparent homogeneity and behaved as a monomeric protein with a molecular weight of about 45,000. It had predominantly a phosphoanhydride phosphatase activity and preferentially hydrolyzed the gamma-phosphoryl residue of GTP (Km = 0.35 mM) and the 5'-beta-phosphoryl residue of ppGpp (Km = 1.8 mM). The corresponding beta-phosphoryl residue of GDP was little hydrolyzed, while CTP, ATP, and UTP were not. The enzyme did not split most phosphomonoesters with the exception of the synthetic substrate p-nitrophenyl phosphate (Km = 2.7 mM), 2,3-bisphosphoglycerate (Km = 5 mM), and fructose 1,6-bisphosphate (Km = 5 mM). It was competitively inhibited by tartaric acid and by sodium fluoride (Ki = 60 microM). In addition, it was sensitive to the inhibitor of the translation elongation factor EF-G fusidic acid, and was also strongly inhibited by the triazine dye Cibacron Blue F3GA (Ki = 0.3 microM), suggesting the existence of a site able to recognize nucleotides.  相似文献   

13.
The role of protein phosphatases in the regulation of insulin release from rat pancreatic islets was studied with protein phosphatase inhibitors, okadaic acid and calyculin A. Okadaic acid inhibited glucose- and glyceraldehyde-induced insulin release dose-dependently and also inhibited the potentiation of glucose-induced release either by adding forskolin, an activator of adenylate cyclase or by increasing K+ concentration to 25 mM. At a non-stimulatory concentration of 3 mM glucose, a high concentration (2 microM) of okadaic acid inhibited insulin release induced by high K+ or 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, but a low concentration (1 microM) of okadaic acid did not significantly inhibit TPA-induced insulin release. Calyculin A also inhibited glucose-induced insulin release, and the effect was greater than that of okadaic acid. The data suggest that protein phosphatases may play an important role in the regulation of insulin release.  相似文献   

14.
The importance of protein phosphatases in maintaining the integrity of intermediate filaments is supported by the fact that intermediate filaments would undergo a massive reorganization in cells treated with inhibitors of protein phosphatases 1 and 2A. Herein we used okadaic acid to investigate the differential roles of protein phosphatases 1 and 2A in the maintenance of intermediate filament integrity in 9L rat brain tumor cells. Protein phosphatase 2A activity was substantially inhibited after treatment with 400 nM okadaic acid for 2 h, whereas the activity of protein phosphatase 1 was only slightly affected. Furthermore, protein phosphatase 2A shows selective specificity toward phosphovimentin, which was immunologically precipitated from isotopically labeled and okadaic acid-treated cells. Further biochemical fractionation and microscopic studies revealed that vimentin intermediate filaments were colocalized with protein phosphatase 2A, but not protein phosphatase 1, in control cells. On okadaic acid treatment, vimentin filament disassembled and protein phosphatase 2A redistributed throughout the cytoplasm, suggesting that these two proteins separate from each other, whereas protein phosphatase 2A was inhibited. This working hypothesis was further supported by treatment with a low concentration (40 nM) of okadaic acid, which causes the same phenomenon. Taken together, our results showed that protein phosphatase 2A could be assigned to the intermediate filaments to serve the physiological role in maintaining the proper phosphorylation level of intermediate filaments in normal cells. This finding should pave the way for the elucidation of the regulatory mechanism of intermediate filament organization governed by protein phosphorylation.  相似文献   

15.
The inhibitory effect of a marine-sponge toxin, okadaic acid, was examined on type 1, type 2A, type 2B and type 2C protein phosphatases as well as on a polycation-modulated (PCM) phosphatase. Of the protein phosphatases examined, the catalytic subunit of type 2A phosphatase from rabbit skeletal muscle was most potently inhibited. For the phosphorylated myosin light-chain (PMLC) phosphatase activity of the enzyme, the concentration of okadaic acid required to obtain 50% inhibition (ID50) was about 1 nM. The PMLC phosphatase activities of type 1 and PCM phosphatase were also strongly inhibited (ID50 0.1-0.5 microM). The PMCL phosphatase activity of type 2B phosphatase (calcineurin) was inhibited to a lesser extent (ID50 4-5 microM). Similar results were obtained for the phosphorylase a phosphatase activity of type 1 and PCM phosphatases and for the p-nitrophenyl phosphate phosphatase activity of calcineurin. The following phosphatases were not affected by up to 10 microM-okadaic acid: type 2C phosphatase, phosphotyrosyl phosphatase, inositol 1,4,5-trisphosphate phosphatase, acid phosphatases and alkaline phosphatases. Thus okadaic acid had a relatively high specificity for type 2A, type 1 and PCM phosphatases. Kinetic studies showed that okadaic acid acts as a non-competitive or mixed inhibitor on the okadaic acid-sensitive enzymes.  相似文献   

16.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic protein phosphatase activity, which can dephosphorylate phospholamban and regulate calcium transport. This phosphatase has been suggested to be a mixture of both type 1 and type 2 enzymes (E. G. Kranias and J. Di Salvo, 1986, J. Biol. Chem. 261, 10,029-10,032). In the present study the sarcoplasmic reticulum phosphatase activity was solubilized with n-octyl-beta-D-glucopyranoside and purified by sequential chromatography on DEAE-Sephacel, polylysine-agarose, heparin-agarose, and DEAE-Sephadex. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. The partially purified phosphatase could dephosphorylate the sites on phospholamban phosphorylated by either cAMP-dependent or calcium-calmodulin-dependent protein kinase(s). Enzymatic activity was inhibited by inhibitor-2 and by okadaic acid (I50 = 10-20 nM), using either phosphorylase a or phospholamban as substrates. The sensitivity of the phosphatase to inhibitor-2 or okadaic acid was similar for the two sites on phospholamban, phosphorylated by the cAMP-dependent and the calcium-calmodulin-dependent protein kinases. Phospholamban phosphatase activity was enhanced (40%) by Mg2+ or Mn2+ (3 mM) while Ca2+ (0.1-10 microM) had no effect. These characteristics suggest that the phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme, and this activity may participate in the regulation of Ca2+ transport through dephosphorylation of phospholamban in cardiac muscle.  相似文献   

17.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

18.
We have partially purified an 18-kDa cytoplasmic protein from 3T3-L1 cells, which dephosphorylates pNPP and the phosphorylated adipocyte lipid binding protein (ALBP), and have identified it by virtue of kinetic and immunological criteria as an acid phosphatase (EC 3.1.3.2). The cytoplasmic acid phosphatase was inactivated by phenylarsine oxide (PAO) (Kinact = 10 microM), and the inactivation could be reversed by the dithiol, 2,3-dimercaptopropanol (Kreact = 23 microM), but not the monothiol, 2-mercaptoethanol. Cloning of the human adipocyte acid phosphatase revealed that two isoforms exist, termed HAAP alpha and HAAP beta (human adipocyte acid phosphatase), which are distinguished by a 34-amino acid isoform-specific domain. Sequence analysis shows HAAP alpha and HAAP beta share 74% and 90% identity with the bovine liver acid phosphatase, respectively, and 99% identity with both isoenzymes of the human red cell acid phosphatase but no sequence similarity to the protein tyrosine phosphatases (EC 3.1.3.48). HAAP beta has been cloned into Escherichia coli, expressed, and purified as a glutathione S-transferase fusion protein. Recombinant HAAP beta was shown to dephosphorylate pNPP and phosphoALBP and to be inactivated by PAO and inhibited by vanadate (Ki = 17 microM). These results describe the adipocyte acid phosphatase as a cytoplasmic enzyme containing conformationally vicinal cysteine residues with properties that suggest it may dephosphorylate tyrosyl phosphorylated cellular proteins.  相似文献   

19.
Calmodulin-dependent protein phosphatase from bovine brain and heart was assayed for phosphotyrosine and phosphoserine phosphatase activity using several substrates: 1) smooth muscle myosin light chain (LC20) phosphorylated on tyrosine or serine residues, 2) angiotensin I phosphorylated on tyrosine, and 3) synthetic phosphotyrosine- or phosphoserine-containing peptides with amino acid sequences patterned after the autophosphorylation site in Type II regulatory subunit of the cAMP-dependent protein kinase. The phosphatase was activated by Ni2+ and Mn2+, and stimulated further by calmodulin. In the presence of Ni2+ and calmodulin, it exhibited similar kinetic constants for the dephosphorylation of phosphotyrosyl LC20 (Km = 0.9 microM, and Vmax = 350 nmol/min/mg) and phosphoseryl LC20 (Km = 2.6 microM, Vmax = 690 nmol/min/mg). Dephosphorylation of phosphotyrosyl LC20 was inhibited by phosphoseryl LC20 with an apparent Ki of 2 microM. Compared to the reactions with phosphotyrosyl LC20 as the substrate, reactions with phosphotyrosine-containing oligopeptides exhibited slightly higher Km and lower Vmax values. The reaction with the phosphoseryl peptide based on the Type II regulatory subunit sequence exhibited a slightly higher Km (23 microM), but a much higher Vmax (4400 nmol/min/mg) than that with its phosphotyrosine-containing counterpart. Micromolar concentrations of Zn2+ inhibited the phosphatase activity; vanadate was less potent, and 25 mM NaF was ineffective. The study provides quantitative data to serve as a basis for comparing the ability of the calmodulin-dependent protein phosphatase to act on phosphotyrosine- and phosphoserine-containing substrates.  相似文献   

20.
The protein phosphatase inhibitor okadaic acid (> 100 nM) caused an abrupt and complete cessation of primary rat hepatocyte cell cycle progression at the restriction point in late G1. A decline in the G1/S transition rate was observed in response to elevated cAMP, excess selected nutrients, and okadaic acid (< 100 nM). Excess nutrients (40 mM glucose ± 5 mM dihydroxyacetone) acted by imposing an incomplete block in early G1. The cAMP action was potentiated by the phosphatase inhibitor microcystin, which in itself did not affect DNA replication. This suggests that cAMP acted by phosphorylating substrate(s) that is dephosphorylated by a microcystin-sensitive phosphatase. The additive effects of submaximal concentrations of okadaic acid and cAMP analogs indicated that okadaic acid and cAMP acted via different pathways. In conclusion, okadaic acid, cAMP, and excess nutrients, acting through distinct pathways, inhibited hepatocytes in different parts of the G1 phase. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号