首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Using sequences from the plastid trnL-F region and nrDNA ITS, we investigated the phylogeny of the fleshy-fruited African tribe Haemantheae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a combined matrix produce the most resolute and well-supported tree with parsimony analysis. Two main clades are resolved, one comprising the monophyletic rhizomatous genera Clivia and Cryptostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Apodolirion/Gethyllis subclade. One of four included Gethyllis species, G. lanuginosa, resolves as sister to Apodolirion with ITS. Relationships among the Clivia species are not in agreement with a previous published phylogeny. Biogeographic analysis using the divergence/vicariance method roots the tribe in Eastern South Africa, with several subsequent dispersals to the winter rainfall Western Cape region. Chromosomal change from an ancestral 2n=22 (characteristic of Clivia) is associated with each main clade. Reduction in number has occurred in all but Cryptostephanus, which has 2n=24 chromosomes. Increasing the sampling across all of the species in the tribe will allow a more detailed understanding of the biogeographic patterns inherent in the parsimony topology, which undoubtedly reflect Quaternary climatic changes in Southern Africa.  相似文献   

2.
This project undertakes the first molecular-based phylogenetic study of subfamily Epidendroideae (Orchidaceae). Approximately 1200 nucleotides (from the 3' half of the chloroplast gene ndhF for 34 orchid taxa and a lilioid monocot, Clivia miniata (Amaryllidaceae), were subjected to phylogenetic analysis using parsimony and maximum likelihood methods. Oryza sativa (Poaceae), a nonlilioid monocot, was designated as outgroup. Trees from both parsimony and maximum likelihood methods suggest that subfamily Epidendroideae is monophyletic, with Listera (Neottieae) as sister. Although subtribal relationships are typically well resolved and have strong branch support, intertribal relationships are generally poorly resolved. Perhaps this general lack of resolution among tribes reflects a rapid species radiation that coincided with anatomical, physiological, and anatomical adaptations that initiated large-scale epiphytism in the ancestral Epidendroideae. Six taxa in this study exhibit deletions that are not evenly divisible by three and result in extensive sequence frameshifts. For example, one deletion is 227 bp in length and is flanked by the short direct repeat sequence; TCAATAGGAATTTCTTTT. Multiple deletions and frameshifts suggest that ndhF may be a pseudogene, in at least some orchid taxa.  相似文献   

3.
Phylogeny of Holothuroidea (Echinodermata) inferred from morphology   总被引:4,自引:0,他引:4  
Holothuroids, or sea cucumbers, are an abundant and diverse group of echinoderms with over 1400 species occurring from the intertidal to the deepest oceanic trenches. In this study, we report the first phylogeny of this class, based on a cladistic analysis of 47 morphological characters. We introduce several previously unconsidered synapomorphic characters, examine the relationships between representatives from all extant families and assess the assumptions of monophyly for each order and subclass. Maximum-parsimony analyses using three rooting methods recovered well-supported and identical topologies when two small and apparently derived families, Eupyrgidae and Ge-phyrothuriidae, were removed. The results suggest that the higher-level arrangement of Holothuroidea warrants a considerable revision. Apodida was sister to the other holothuroids. The monophyly of Dendrochirotida was not supported and the group may be paraphyletic. A randomization test using Wills' gap excess ratio found significant congruence between the phylogeny and the stratigraphic record of fossil members, suggesting that the fossil record of holothuroids is not as incomplete as is often stated. The fossil-calibrated tree indicated that several groups of holothuroids survived the end-Permian mass extinction and that the clade composed of Dendrochirotida, Dactylochirotida, Aspidochirotida and Molpadiida rapidly radiated during the Triassic.  相似文献   

4.
Qiao CY  Ran JH  Li Y  Wang XQ 《Annals of botany》2007,100(3):573-580
BACKGROUND AND AIMS: Cedrus (true cedars) is a very important horticultural plant group. It has a disjunct distribution in the Mediterranean region and western Himalaya. Its evolution and biogeography are of great interest to botanists. This study aims to investigate the phylogeny and biogeography of Cedrus based on sequence analyses of seven cytoplasmic DNA fragments. METHODS: The methods used were PCR amplification and sequencing of seven paternal cpDNA and maternal mtDNA fragments, parsimony and maximum likelihood analyses of the DNA dataset, and molecular clock estimate of divergence times of Cedrus species. KEY RESULTS: Phylogenies of Cedrus constructed from cpDNA, mtDNA and the combined cp- and mt-DNA dataset are identical in topology. It was found that the Himalayan cedar C. deodara diverged first, and then the North African species C. atlantica separated from the common ancestor of C. libani and C. brevifolia, two species from the eastern Mediterranean area. Molecular clock estimates suggest that the divergence between C. atlantica and the eastern Mediterranean clade at 23.49 +/- 3.55 to 18.81 +/- 1.25 Myr and the split between C. libani and C. brevifolia at 7.83 +/- 2.79 to 6.56 +/- 1.20 Myr. CONCLUSIONS: The results, combined with palaeogeographical and palaeoecological information, indicate that Cedrus could have an origin in the high latitude area of Eurasia, and its present distribution might result from vicariance of southerly migrated populations during climatic oscillations in the Tertiary and further fragmentation and dispersal of these populations. It is very likely that Cedrus migrated into North Africa in the very late Tertiary, while its arrival in the Himalayas would not have been before the Miocene, after which the phased or fast uplift of the Tibetan plateau happened.  相似文献   

5.
 The inclusion of Tenaris and Macropetalum in Brachystelma as proposed by Peckover in 1996 and contested by Victor and Nicholas in 1998 is supported by molecular studies. Parsimony analysis of sequence data from two non-coding molecular markers (ITS region of nrDNA and trnT-L and trnL-F spacers as well as the trnL intron of cpDNA) suggests a well-supported Brachystelma s.l. clade (including Tenaris and Macropetalum) with little internal resolution. The Brachystelma s.l. clade occupies a sistergroup position to the Ceropegia/stapeliad clade, and both clades together are sister to an Anisotoma/Sisyranthus/Neoschumannia clade. Received January 8, 2001 Accepted April 10, 2001  相似文献   

6.
Centris (Wagenknechtia) is the only subgenus of centridine bees that occurs almost exclusively in the Andean Region. This study investigates the monophyly of C. (Wagenknechtia) proposing a hypothesis for the relationships among its species using 42 morphological characters of adults. The analysis resulted in one most parsimonious tree corroborating the monophyly of this group of oil-collecting bees, with the relationships among its species as follows: ((Cescomeli + Cmoldenkei) (Cmuralis (Crhodophthalma + Cvardyorum) (Ccineraria + Corellanai))). Based on these results plus available distributional records, a cladistic biogeographic analysis was performed. The resulting hypothesis of the relationships between the endemism areas in the Andean Region is as follows: (((Atacama–Puna) (Desert–Atacama–Puna)) ((Pampean–Chaco–Puna) ((Monte–Coquimban) (Coquimban (Patagonian–Valdivian Forest–Coquimban–Maule–Monte–Santiago–Magellanic Forest))))).  相似文献   

7.
Rubia L. is the type genus of the coffee family Rubiaceae and the third largest genus in the tribe Rubieae, comprising ca. 80 species restricted to the Old World. China is an important diversity center for Rubia, where approximately half of its species occur. However, its internal phylogenetic relationships are still poorly understood. The objective of the present study is to contribute to the phylogenetic relationships within Rubia, using the nuclear internal transcribed spacer and six plastid markers and focusing on species from China. Twenty-seven species of Rubia were sampled to infer their phylogeny using Maximum parsimony, Maximum likelihood, and Bayesian analyses. The monophyly of Rubia is supported, provided that R. rezniczenkoana Litv. is excluded from Rubia and transferred to Galium as a new combination: G. rezniczenkoanum (Litv.) L. E Yang & Z. L. Nie. Within Rubia, two clades are clearly supported. They correspond to the traditional sect. Rubias.l. (A) and sect. Oligoneura Pojark. (B), and are morphologically mainly separable by their pinnate (A) versus palmate (B) leaf venation. Plesiomorphic features are the pinnate leaf veining in sect. Rubia s.l. and the occurrence of some species with opposite leaves and true stipules in sect. Oligoneura. In sect. Oligoneura one can assume an evolution from species with opposite leaves and true stipules (as in the R. siamensis Craib group) to those with whorls of two leaves and two leaf-like stipules (as in ser. Chinenses and the R. mandersii Collett & Hemsl. group) and finally with whorls of 6 or even more elements (as in ser. Cordifoliae). The correlation between clades recognized by DNA analyses and available differential morphological features is partly only loose, particularly in the group of R. cordifolia with 2×, 4×, and 6× cytotypes. This may be due to rapid evolutionary divergence and/or hybridization and allopolyploidy.  相似文献   

8.
This is the first comprehensive molecular investigation of the genus Celastrus L. Phylogenetic relationships within the genus were assessed based on sequences of two nuclear (ETS, ITS) and three plastid (psbA-trnH, rpl16 and trnL-F) regions using the Bayesian inference and the maximum parsimony methods. Our results show that Celastrus, together with Tripterygium, formed a maximal supported clade. Within the cluster, Celastrus is composed of a basal clade and a core Celastrus clade, and the latter is consisted of six subclades. Relationships among species are more influenced by latitude than continental distribution patterns. The cauline cyme and lunate seeds are distinct characters to one of the maximal supported subclades. Their close relationship, similar geographical pattern and habitat imply that C. flagellaris may be a potential invasive species threatening C. scandens in North America. Celastrus leiocarpus, C. oblanceifolius and C. rugosus are confirmed as synonyms of C. punctatus, C. aculeatus and C. glaucophyllus, respectively. Discordance between the molecular data and previous morphology-based subgeneric classifications are noted. More works are needed to clarify the relationship between Celastrus and Tripterygium and the species within Celastrus.  相似文献   

9.
Chen S  Xia T  Wang Y  Liu J  Chen S 《Annals of botany》2005,96(3):413-424
BACKGROUND AND AIMS: The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences. METHODS: Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae. KEY RESULTS: The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya. CONCLUSIONS: The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.  相似文献   

10.
Based on nuclear ribosomal DNA internal transcribed spacer (ITS) sequences, Thermopsideae is phylogenetically studied within a genistoid background. Analysis reveals that the tribe is not supported as a monophyletic group. Some species of Sophora s.s are nested within it. The central Asian desert Ammopiptanthus forms an isolated clade but is relatively remote to other Thermopsideae members. Piptanthus , Anagyris , Baptisia , and Thermopsis are clustered together into a robust clade. We hence propose that the tribe could either be reduced to just the four 'core genera' with Ammopiptanthus excluded, or, as an alternative, that Thermopsideae could become part of a new Sophoreae s.s. if it is re-circumscribed in the future. Both Piptanthus and Baptisia appear as monophyletic. The genus Anagyris is closer to some east Asian Thermopsis species than to Piptanthus . The east Asian and North American disjunct Thermopsis is not monophyletic. The ITS results suggest a geographical division between the Old World and New World Thermopsis . The east Asian species are clustered with Piptanthus and Anagyris , whereas the North American species are allied to Baptisia . Nonetheless, the only two north-eastern east Asian native Thermopsis species appear to be more related to the North American group than to the east Asian one. The related biogeographical significance has therefore been additionally discussed.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 365–373.  相似文献   

11.
The Agabinae, with more than 350 species, is one of the most diverse lineages of diving beetles (Dytiscidae). Using the mitochondrial genes 16S rRNA and cytochrome oxidase I we present a phylogenetic analysis based on 107 species drawn mostly from the four main Holarctic genera. Two of these genera (Ilybius and Ilybiosoma) are consistently recovered as monophyletic with strong support, Platambus is never recovered as monophyletic, and Agabus is found paraphyletic with respect to several of the species groups of Platambus. Basal relationships among the main lineages are poorly defined, although within each of them relationships are in general robust and very consistent across the parameter space, and in agreement with previous morphological analyses. In each of the two most diverse lineages (Ilybius and Agabus including part of Platambus) there is a basal split between Palearctic and Nearctic clades, estimated to have occurred in the late Eocene. The Palearctic clade in turn splits into a Western Palearctic clade and a clade containing mostly Eastern Palearctic species, and assumed to be ancestrally Eastern Palearctic but with numerous transitions to a Holarctic or Nearctic distribution. These results suggest an asymmetry in the colonization routes, as there are very few cases of transcontinental range expansions originating from the Nearctic or the Western Palearctic. According to standard clock estimates, we do not find any transcontinental shift during the Pliocene, but numerous speciation events within each of the continental or subcontinental regions.  相似文献   

12.
BACKGROUND AND AIMS: The phylogenetic relationships between species of Coffea and Psilanthus remain poorly understood, owing to low levels of sequence variation recovered in previous studies, coupled with relatively limited species sampling. In this study, the relationships between Coffea and Psilanthus species are assessed based on substantially increased molecular sequence data and greatly improved species sampling. METHODS: Phylogenetic relationships are assessed using parsimony, with sequence data from four plastid regions [trnL-F intron, trnL-F intergenic spacer (IGS), rpl16 intron and accD-psa1 IGS], and the internal transcribed spacer (ITS) region of nuclear rDNA (ITS 1/5.8S/ITS 2). Supported lineages in Coffea are discussed within the context of geographical correspondence, biogeography, morphology and systematics. KEY RESULTS: Several major lineages with geographical coherence, as identified in previous studies based on smaller data sets, are supported. Other lineages with either geographical or ecological correspondence are recognized for the first time. Coffea subgenus Baracoffea is shown to be monophyletic, but Coffea subgenus Coffea is paraphyletic. Sequence data do not substantiate the monophyly of either Coffea or Psilanthus. Low levels of sequence divergence do not allow detailed resolution of relationships within Coffea, most notably for species of Coffea subgenus Coffea occurring in Madagascar. The origin of C. arabica by recent hybridization between C. canephora and C. eugenioides is supported. Phylogenetic separation resulting from the presence of the Dahomey Gap is inferred based on sequence data from Coffea.  相似文献   

13.
Moenkhausia is one of the most speciose genera in Characidae, currently composed of 75 nominal species of small fishes distributed across South American hydrographic basins, primarily the Amazon and Guyanas. Despite the large number of described species, studies involving a substantial number of its species designed to better understand their relationships and putative monophyly are still lacking. In this study, we analysed a large number of species of Moenkhausia to test the monophyly of the genus based on the phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes. The in‐group included 29 species of Moenkhausia, and the out‐group was composed of representatives of Characidae and other members of Characiformes. All species of Moenkhausia belong to the same clade (Clade C); however, they appear distributed in five monophyletic groups along with other different genera, which means that Moenkhausia is polyphyletic and indicates the necessity of an extensive revision of the group.  相似文献   

14.
New insights into evolutionary trends in the economically important oat tribe (Aveneae) are presented. Plastid trnT-F and nuclear ribosomal ITS sequences were used to reconstruct the phylogeny of the Aveneae-Poeae-Seslerieae complex (Pooideae, Poaceae) through Bayesian- and maximum parsimony-based analyses, separately and in combination. The plastid data identified a strongly supported core Aveneae lineage that separated from other former Aveneae and Poeae groups. Koeleriinae, Aveninae, and Agrostidinae emerged as the main groups of this core Aveneae, which also included other minor subgroups with uncertain relationships and a few former Poeae members. Several former Aveneae representatives were also placed in independent sublineages in Poeae. Seslerieae resolved as close allies of Poeae or Aveneae in the plastid and nuclear topologies, respectively. Because of the intermingling of some Aveneae and Seslerieae lineages in Poeae and vice versa, we propose to expand Poeae to include all the aforementioned lineages. This best reflects our current understanding of the phylogeny of these important temperate grasses and sheds light on their evolutionary history.  相似文献   

15.
Twenty-one members of the Laurasian group of Therevinae (Diptera: Therevidae) are compared using 65 adult morphological characters. Cladistic analysis using parsimony on the 17 ingroup and 4 outgroup taxa provides a well-supported hypothesis of relationships among taxa within the Gyclotelini, tribe nov. The Cyclotelini is a monophyletic assemblage of mostly New World genera, including Anolinga , gen. nov. , Breviperna Irwin, Coleiana , gen. nov. , Crebraseta , gen. nov. , Cyclotelus Walker, Mesonana , gen.nov. , and Ozodiceromyia Bigot. In addition, three Old World genera, Ammothereva Lyneborg, Bugulaverpa , gen. nov. , and Procyclotelus Nagatomi & Lyneborg, are included in the tribe. These ten genera are divided into two monophyletic genus-groups, the Brevipema-group and the Cyclotelus-group. Keys are provided for the genera of Cyclotelini. The tribe, the two informal genus-groups, and all genera are diagnosed; five new genera and six new species are proposed. The biogeographical histories of the genera are discussed in terms of their cladistic relationships using methods of cladistic biogeography. Two major vicariant events account for the current distribution of the tribe. The first relates to the Beringian land bridge connecting western North America and eastern Asia. Second, New World cyclotelines were profoundly affected by the Early Eocene breakup of the archipelagic bridge between North and South America, and the distributions support the hypotheses favouring the continental origin of the Greater Antilles.  相似文献   

16.
Previous molecular phylogenetic studies of Fabaceae indicated that species of Wisteria, an intercontinental disjunct genus between eastern Asia and eastern North America, formed a clade derived from within Callerya. However, interspecific relationships were not well resolved or supported. In this study, we used sequences of the nuclear ribosomal DNA internal transcribed spacer region and the chloroplast gene matK to examine interspecific relationships and explore implications of the phylogeny for the systematics and biogeography of Wisteria. Our results showed that Wisteria with deciduous leaves and racemose inflorescences formed a strongly supported clade derived from within the paraphyletic Callerya. Afgekia was also found to be included within Callerya. Therefore, our data support the merger ofAfgekia, Callerya, and Wisteria. The phylogenetic pattern suggested that the deciduousness in Wisteria may be a derived trait likely in response to temperate climate, and the racemose inflorescences in the Afgekia–Callerya–Wisteria clade may have evolved from panicles. Our study also provided strong support for the sister relationship of the North American and eastern Asian species of Wisteria. In the Asian clade, Wisteria brachybotrys Siebold & Zucc. of Japan was sister to the clade containing W. floribunda (Willd.) DC of Japan and Korea, and W. sinensis (Sims) Sweet of China. However, our data offered weak support for the sister relationship ofW. floribunda and W. sinensis. Our divergence time and biogeographic analyses suggested that the eastern Asian–North American disjunction in Wisteria may have occurred through a dispersal event in the middle Miocene (13.4 Mya) from the Old World to the New World across the Bering land bridge followed by vicariance in the late Miocene (6.8 Mya). This study added another example to the “out of Asia” migration for the eastern Asian–eastern North American disjunction.  相似文献   

17.
Phylogenetic relationships of Limoniastrum and other genera of subfamily Staticoideae (Plumb-aginaceae) were studied using parsimony analysis of the plastid gene rbc L, the intron of trn L and the intergene spacer of trnL-trn F. Our analysis showed that Limoniastrum was polyphyletic. Limoniastrum ifniense , in both rbc L and combined data analyses, is sister to Armeria and Psylliostachys , whereas in the trn L-F (intron and spacer combined) analysis it is sister to a clade composed of Acantholimon, Dictyolimon and the remaining species of Limoniastrum . In all analyses, the five remaining species of Limoniastrum (excluding Limoniatrum ifniense ) formed a clade with two groups of species: L. monopetalum+L. guyonianum and those sometimes considered as the segregate genus Bubania ( L.feei, L. weygandiorum and L. rechingeri ). Levels of sequence divergence among these three groups of Limoniatrum were greater than for other well supported genera in the family and, in combination with morphological differences and paucity of synapomorphies, led us to conclude that separate generic status for each of the three clades is warranted.  相似文献   

18.
Based on a combined dataset of plastid DNA sequences (atpB‐rbcL, trnG, trnL‐trnL‐trnF, trnK 5' intron and matK) from 60 individuals, we conducted parsimony and likelihood analyses to clarify the phylogenetic relationships among the six species and three varieties that are commonly recognised in Heloniopsis, in addition to the related genera Ypsilandra and Helonias, using Chamaelirium and Chionographis as an outgroup. According to the single most parsimonious tree, which was identical to the maximum‐likelihood tree in topology, Helonias, Ypsilandra and Heloniopsis are all monophyletic with 100% bootstrap support (BS). In Heloniopsis, there are two highly supported clades (BS 94–97%): a clade of Korean species and a clade of Japanese and Taiwanese species. The latter clade comprised the following four subclades (BS 99–100%): 1) H. orientalis var. orientalis, 2) H. orientalis var. breviscapa and var. flavida, 3) H. kawanoi and 4) H. leucantha and H. umbellata. Because subclades 1 and 2 did not form a monophyletic group, and do show clear morphological differences – including nectary position, nectary‐sac structure and leaf margin undulation – they should be distinguished at the species level: H. orientalis for subclade 1 and H. breviscapa for subclade 2. In subclade 2, neither var. breviscapa nor var. flavida was monophyletic; instead, var. breviscapa plus var. flavida (thick‐leaved entity) was monophyletic (BS 62–63%) and var. flavida (thin‐leaved entity) was monophyletic (BS 86–87%). As var. breviscapa and var. flavida (thick‐leaved entity) share basally ± pinkish wide tepals and dark‐coloured thick leaves, in contrast to var. flavida (thin‐leaved entity), which has completely white narrow tepals and light‐coloured thin leaves, the two varieties should may be kept distinct after the merge of var. flavida (thick‐leaved entity) with var. breviscapa.  相似文献   

19.
Phylogenetics of Chilopsis and Catalpa (Bignoniaceae) was elucidated based on sequences of chloroplast ndhF and the nrDNA ITS region. In Bignoniaceae, Chilopsis and Catalpa are most closely related as sister genera. Our data supported section Macrocatalpa of the West Indies and section Catalpa of eastern Asian and North American continents. Within section Catalpa, Catalpa ovata of eastern Asia form a clade with North American species, C. speciosa and C. bignonioides, while the other eastern Asian species comprise a clade where C. duclouxii is sister to the clade of C. bungei and C. fargesii. The Caribbean species of Catalpa diverged early from the continental species. More studies are needed to test whether the phylogenetic pattern is common in eastern Asian-North American disjunct genera with species in the West Indies.  相似文献   

20.
The rbcL sequences of 106 specimens representing 28 species of the four recognized sections of Orobanche were analyzed and compared. Most sequences represent pseudogenes with premature stop codons. This study confirms that the American lineage (sects. Gymnocaulis and Myzorrhiza) contains potentially functional rbcL-copies with intact open reading frames and low rates of non-synonymous substitutions. For the first time, this is also shown for a member of the Eurasian lineage, O. coerulescens of sect. Orobanche, while all other investigated species of sects. Orobanche and Trionychon contain pseudogenes with distorted reading frames and significantly higher rates of non-synonymous substitutions. Phylogenetic analyses of the rbcL sequences give equivocal results concerning the monophyly of Orobanche, and the American lineage might be more closely related to Boschniakia and Cistanche than to the other sections of Orobanche. Additionally, species of sect. Trionychon phylogenetically nest in sect. Orobanche. This is in concordance with results from other plastid markers (rps2 and matK), but in disagreement with other molecular (nuclear ITS), morphological, and karyological data. This might indicate that the ancestor of sect. Trionychon has captured the plastid genome, or parts of it, of a member of sect. Orobanche. Apart from the phylogenetically problematic position of sect. Trionychon, the phylogenetic relationships within sect. Orobanche are similar to those inferred from nuclear ITS data and are close to the traditional groupings traditionally recognized based on morphology. The intraspecific variation of rbcL is low and is neither correlated with intraspecific morphological variability nor with host range. Ancestral character reconstruction using parsimony suggests that the ancestor of O. sect. Orobanche had a narrow host range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号