首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate the prevalence and virulence characteristics of Escherichia coli O157:H7 after a number of beef process operations at a commercial Irish abattoir. METHODS AND RESULTS: Two 12-month studies were carried out. The first study (study 1) examined the prevalence of E. coli O157:H7 at up to six sites on carcasses at eight stages of the dressing, washing, chilling and boning process. The second study (study 2) examined the prevalence of E. coli O157:H7 in bovine faeces and rumen contents post-slaughter and on dressed, washed carcasses. Isolates from both studies were phage-typed and the presence of genes encoding verocytotoxin, enterohaemolysin and intimin production was determined. E. coli O157:H7 was isolated from four of 36 carcasses in study 1. E. coli O157:H7 was detected during hide removal and was detected at multiple carcass sites and multiple process stages, including boning. On two carcasses, contamination was first detected at the bung following its freeing and tying. All isolates from study 1 were phage type (PT) 2, eaeAO157 and ehlyA positive, but were verocytotoxin 1 (VT1) and verocytotoxin 2 (VT2) negative. In study 2, E. coli O157:H7 was isolated from 2.4% of faecal, 0.8% of rumen and 3.2% of carcass samples. In some cases, isolates recovered from the faeces of a particular animal, the resulting carcass and adjacent carcasses on the line had the same phage typing and virulence characteristic profile patterns. All isolates from study 2 were eaeAO157 and ehlyA positive and only one isolate was VT1 and VT2 negative. Most isolates were PT 32. A higher frequency of positive isolations was noted from samples taken during spring and late summer. CONCLUSION: These studies show that in a typical Irish beef abattoir, carcass contamination with E. coli O157:H7 can occur during hide removal and bung tying and this contamination can remain on the carcass during subsequent processing. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides data that is necessary for the understanding of how E. coli O157:H7 contamination of beef occurs.  相似文献   

2.
AIM: To develop an improved, rapid and sensitive sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. METHODS AND RESULTS: Fresh ground beef samples were experimentally inoculated with varying concentrations of E. coli O157:H7. PCR inhibitors were removed and bacterial cells were concentrated by filtration and centrifugation, and lysed using enzymatic digestion and successive freeze/thaw cycles. DNA was purified and concentrated via phenol/chloroform extraction and the Shiga toxin 1 gene (stx1) was amplified using PCR to evaluate the sample preparation method. Without prior enrichment of cells in broth media, the detection limit was 103 CFU g-1 beef. When a 6 h enrichment step was incorporated, the detection limit was 1 CFU g-1 beef. The total time required from beginning to end of the procedure was 12 h. CONCLUSIONS: The sample preparation method developed here enabled substantially improved sensitivity in the PCR-based detection of E. coli O157:H7 in ground beef, as compared to previous reports. SIGNIFICANCE AND IMPACT OF THE STUDY: Superb sensitivity, coupled with quick turn-around time, relative ease of use and cost-effectiveness, makes this a useful method for detecting E. coli O157:H7 in ground beef.  相似文献   

3.
AIMS: To determine the effectiveness of a novel dry air decontamination apparatus in the deactivation of Salmonella serotype Typhimurium DT104 or Escherichia coli O157:H7 on beef surfaces. METHODS AND RESULTS: A laboratory scale dry air decontamination apparatus, capable of producing repeatable and known heating time-temperature cycles on food surfaces was used in decontamination trials. Beef samples were surface inoculated with 7-8 log10CFU cm(-2) of S. Typhimurium DT104 or E. coli O157:H7 and heated at 60, 75, 90 and 100 degrees C using fast and slow heating rates and subsequently held at these temperatures for up to 600 s. A substantial reduction in pathogen numbers was achieved at higher temperatures (90 and 100 degrees C, 4.18-6.06 log10CFU cm(-2)) using both heating rates, but cell survival at these temperatures was also observed. At the lower temperatures, deactivation was small at 60 degrees C in particular it was less than one log unit after 3 min heating. No significant differences were observed when total reductions in pathogen counts were compared for all the temperature/heat up time combinations tested. During slow heating at 90 degrees C, and both heating rates at 100 degrees C, the pattern of deactivation of S. Typhimurium DT104 or E. coli O157:H7 was triphasic. CONCLUSIONS: This study has shown that heating meat surfaces with dry air can achieve substantial reductions in S. Typhimurium DT104 or E. coli O157:H7. As surface decontamination of beef surfaces with dry air had a negative effect on beef colour and appearance, such a decontamination apparatus would be unsuitable for producing meat for retail sale but it could be used to produce safer meat for use in the catering trade. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides researchers and food processors with data on the dynamic changes in S. Typhimurium DT104 and E. coli O157:H7 counts on intact beef surfaces during heating with dry air under realistic (time-varying) temperature conditions.  相似文献   

4.
肠出血性大肠杆菌O157:H7监测及分析   总被引:3,自引:0,他引:3  
为了了解长春地区动物和人感染肠出血性大肠杆菌O157H7状况,建立流行病学监测网.采集长春市动物养殖场动物粪便和腹泻病人便样进行监测.结果在牛粪和鸡粪中共检出2株O157H7大肠杆菌.可见,在长春地区存在肠出血性大肠杆菌O157H7菌潜在污染的威胁,需要加强监测力度.  相似文献   

5.
本研究利用SL培养基从蚯蚓粪中分离到54株具有产酸性能的菌株,并以E. coli O157:H7 (EDL933株)作为指示菌株,采用点种法检测分离菌株的抑菌活性.结果表明其中6个菌株对指示菌具有拮抗作用,通过形态特征,结合16S rDNA序列分析,初步鉴定该6个菌株分别为食物魏斯特菌(Listeria welshimeri)、乳酸片球菌(Pediococcus acidilactici)、短乳杆菌(Lactobacillus brevis)和格氏乳球菌(Lactococcus garvieae).分离到的乳酸菌对E. coli O157:H7 (EDL933株)具有显著的抑制作用,发酵温度和初始pH值影响发酵液的抑菌作用,优化环境因子可以促进拮抗菌对E. coli O157:H7的抑制作用.本研究为进一步分离抗菌产物用于人畜共患病的预防和治疗提供了理论依据.  相似文献   

6.
Aim:  To determine the influence of body condition (BC) and forage type on the prevalence of faecal shedding of Escherichia coli O157:H7 and Salmonella from beef cows.
Methods and Results:  Thin or moderately conditioned cows ( n  =   115) were randomly assigned to graze either common bermudagrass ( n  =   3 pastures) or toxic endophyte-infected tall fescue ( n  =   3 pastures) for 62 days. Faecal samples were collected on day 0, 30 and 62. Overall percentage of faecal samples positive for E. coli O157:H7 was 2·6% and 2·0% for Salmonella . Percentage of cows positive for both E. coli O157:H7 and Salmonella on at least one occasion was 6·1%. BC, forage type or the interaction did not influence the prevalence of E. coli O157:H7 or Salmonella in the faeces of cows.
Conclusions:  BC at initiation of the grazing period or loss of BC in moderate conditioned cows during the grazing period did not influence faecal shedding of E. coli O157:H7 or Salmonella . Consumption of either forage type did not influence faecal shedding of either E. coli O157:H7 or Salmonella in beef cows of thin or moderate BC.
Significance and Impact of the Study:  Change in BC that typically occurs during the normal production cycle in grazing cows did not influence faecal shedding of pathogenic bacteria regardless of forage type.  相似文献   

7.
AIMS: To assess the detection and recovery rates achieved with commonly used cultural methods for the enumeration and recovery of Escherichia coli O157:H7 from minced beef and bovine hide. METHODS AND RESULTS: Minced beef and bovine hide were inoculated with varying concentrations (log(10) 1.58-2.58 CFU g(-1) and log(10) 2.42-4.49 CFU 100 cm(2) respectively) of E. coli O157:H7 and recovered using a direct plate method or an enrichment/immunomagnetic separation (IMS) method and then plated onto SMAC or SMAC-CT in both cases. The direct plate method detected the pathogen consistently from minced beef samples with an average recovery of 69.2-91.2%. From faecal material on the bovine hide the recovery of the pathogen ranged from 1.80 to 64.5% with fresh faeces depending on the inocula while from dried faeces on hide the results ranged from no recovery at all to 25.1%. Enrichment/IMS recovered E. coli O157:H7 at all inocula levels tested in minced beef while the pathogen was only detected consistently at an average inocula level of log(10) 2.73 CFU 100 cm(2) from fresh faeces and log(10) 4.49 CFU 100 cm(2) from dried faeces on bovine hide. CONCLUSIONS: The direct count enumeration method for E. coli O157:H7 underestimated the numbers of pathogens present. The enrichment/IMS procedure consistently detected the pathogen from minced beef but did not always detect E. coli O157:H7 from faeces on bovine hide. SIGNIFICANCE AND IMPACT OF THE STUDY: Overall this study highlights that any microbial data, used in either predictive microbiology or risk assessment, must take account of the sensitivity and associated performance of the methods employed, in order to make an accurate reflection of the true microbiology of the examined sample.  相似文献   

8.
9.
Aims: The purposes of this study were to evaluate the efficacy of high pressure to inactivate Escherichia coli O157:H7 in ground beef at ambient and subzero treatment temperatures and to study the fate of surviving bacteria postprocess and during frozen storage. Methods and Results: Fresh ground beef was inoculated with a five‐strain cocktail of E. coli O157:H7 vacuum‐packaged, pressure‐treated at 400 MPa for 10 min at ?5 or 20°C and stored at ?20 or 4°C for 5–30 days. A 3‐log CFU g?1 reduction of E. coli O157:H7 in the initial inoculum of 1 × 106 CFU g?1 was observed immediately after pressure treatment at 20°C. During frozen storage, levels of E. coli O157:H7 declined to <1 × 102 CFU g?1 after 5 days. The physiological status of the surviving E. coli was affected by high pressure, sensitizing the cells to pH levels 3 and 4, bile salts at 5% and 10% and mild cooking temperatures of 55–65°C. Conclusions: High‐pressure processing (HPP) reduced E. coli O157:H7 in ground beef by 3 log CFU g?1 and caused substantial sublethal injury resulting in further log reductions of bacteria during frozen storage. Significance and Impact of the Study: HPP treatment of packaged ground beef has potential in the meat industry for postprocess control of pathogens such as E. coli O157:H7 with enhanced safety of the product.  相似文献   

10.
Aims: The effectiveness of four strains of Bifidobacteria against enterohemorrhagic Escherichiacoli O157:H7 infection was studied using a Vero cell model. Methods and results: E. coli O157 was inoculated on the Vero cell line before and after treatment with probiotic. The cytopathic effect (CPE) was evaluated during 24 h of incubation. The results indicated that Shiga toxin activity was inhibited by the probiotic. To prevent a Stx2 CPE, the probiotic needs one log more than the Stx1. Conclusion: The Vero cell assay, in particular, is a good model to evaluate the effect of Bifidobacteria inhibiting bacterial attachment because of soluble substances and the competitive aspect and could be used in a variety of foods like milk and yoghurt to protect pathogen bacteria. Significance and Impact of the Study: Probiotics could control pathogenic bacteria and Vero cell introduce as a model for evaluation of probiotics against pathogen bacteria.  相似文献   

11.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

12.
Aims:  To investigate antibacterial activities of zinc oxide nanoparticles (ZnO NP) and their mode of action against an important foodborne pathogen, Escherichia coli O157:H7.
Methods and Results:  ZnO NP with sizes of 70 nm and concentrations of 0, 3, 6 and 12 mmol l−1 and NP-free solutions were used in antimicrobial tests against E. coli O157:H7. ZnO NP showed increasing inhibitory effects on the growth of E. coli O157:H7 as the concentrations of ZnO NP increased. A complete inhibition of microbial growth was achieved at the concentration level of 12 mmol l−1 or higher. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy were used to characterize the changes of morphology and cellular compositions of bacterial cells treated with ZnO NP and study the mode of action of ZnO NP against E. coli O157:H7. The intensity of lipid and protein bands in the Raman spectra of bacterial cells increased after exposure to ZnO NP, while no significant changes in nucleic acid bands were observed.
Conclusions:  ZnO NP were found to have antibacterial activity against E. coli O157:H7. The inhibitory effects increase as the concentration of ZnO NP increased. Results indicate that ZnO NP may distort and damage bacterial cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells.
Significance and Impact of the Study:  These results suggest that ZnO NP could potentially be used as an effective antibacterial agent to protect agricultural and food safety.  相似文献   

13.
Isolation of Escherichia coli O157:H7 from dung beetles Catharsius molossus   总被引:3,自引:0,他引:3  
In an epidemiological survey, Escherichia coli O157:H7 was isolated from the intestine 4 of 113 dung beetle Catharsius molossus captured below ground at Tongshan County, Jiangsu Province of China. In parallel, 10 strains of E. coli O157:H7 were isolated from fecal samples of 383 diarrhea patients from the same region. Most importantly, using pulsed field gel electrophoresis (PFGE) of chromosomal DNA restriction fragments and PCR method, we found that the PFGE pattern and virulence genes of beetle isolates were identical to those of the human isolates, such as Shiga-toxins (stx) and enterohemorrhagic Escherichia coli hemolysin A (EHEC-hlyA). Therefore, dung beetle might acquire pathogenic E. coli O157:H7 through contact with feces of domestic animals.  相似文献   

14.
15.
AIM: To determine the survival of Escherichia coli O157:H7 in dairy wastewater from on-site holding lagoons equipped with or without circulating aerators. METHODS AND RESULTS: Survival was monitored in dairy lagoon microcosms equipped with or without scale-size circulators. Both laboratory strains of E. coli O157:H7 and an isolate of E. coli H7 from wastewater had poor survival rates and none proliferated in water from waste lagoons with or without circulators. Furthermore, the decline of E. coli O157:H7 was not enhanced in those microcosms equipped with circulators. Strain variation in survival was observed in both circulated and settling waters. The decline rate of E. coli O157:H7 Odwalla strain increased proportionately with the inoculum load. Escherichia coli failed to establish itself in wastewater even after four sequential inoculations simulating continuous faecal input into the lagoon. The native aerobic bacteria survived longer with a decimal reduction time of 21.3 days vs either introduced or native E. coli, which declined rapidly with decimal reduction time of 0.5-9.4 days. CONCLUSIONS: Escherichia coli O157:H7 failed to establish and proliferate in dairy wastewater microcosms equipped with or without circulating aerators. SIGNIFICANCE AND IMPACT OF THE STUDY: This study furthers our knowledge of pathogen survival in wastewater, and suggests that proper management of wastewater before its use in irrigation is essential to reduce pathogen transfer to crops.  相似文献   

16.
A total of 401 enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates from two experimentally infected calves were analyzed using molecular biological methods. Genetic differences detected by pulsed-field gel electrophoresis were observed between the inoculated and recovered strains as early as 1 day post inoculation. The loss of the inoculated clone was observed in one calf. Replication and dissemination of the EHEC O157:H7 strains that mutated in cattle may result in the diversification of this organism among cattle populations.  相似文献   

17.
Aim:  To investigate changes in Escherichia coli O157:H7 numbers on excised beef carcass surfaces over 72 h at different temperatures.
Methods and Results:  Excised lean meat, fascia and fat were inoculated with E. coli O157:H7 and held in an environmental chamber for 72 h, at air speed 0·5 m s−1, relative humidity (RH) 90%, and temperatures 4, 8 and 12°C. On lean, pathogen counts increased significantly at 12°C. On fascia, significant reductions in counts occurred at 4 and 8°C. Pathogen numbers were significantly reduced on fat at 4, 8 and 12°C (64 h). Counts on fat were significantly less at all temperatures, compared to lean or fascia and surface water activity, aw, decreased significantly over time on fat at 4°C. Significant decreases in surface pH values were recorded on all meat substrates.
Conclusions:  The survival of E. coli O157:H7 varied in relation to the meat substrate and the holding temperature. Reductions in counts on fat surfaces appeared to be related to low surface aw values. No relationship between pathogen survival and surface pH was established.
Significance and Impact of the Study:  The use of excised meat pieces in an environmental cabinet offers a more flexible approach to determining the use of different chilling regimes in the production of safe meat.  相似文献   

18.
AIM: To determine the mechanisms by which a stabilized oxychloro (SOC)-based sanitizer, applied to decontaminate seeds destined for sprout production, inactivates Escherichia coli O157:H7 ph1 and Salmonella serotype Meleagridis. MATERIALS AND RESULTS: The action of SOC on the metabolism, membrane and DNA integrity of Salmonella and E. coli O157:H7 was studied. In both pathogens, there was an oxidative burst and depletion of intracellular glutathione (GSH) upon initial exposure to 200 ppm SOC. Metabolic activity, measured via bioluminescence, decreased over a 4-h period in E. coli O157:H7 ph1 cells exposed to SOC. Membrane integrity, assessed through viability staining, decreased progressively over 23 h when exposed to SOC. The appearance of auxotrophic mutants suggested that DNA damage had also occurred. Enzymes rich in disulfide bonds (alkaline phosphatase and protease) were sensitive to the chlorite-based sanitizer. Through challenging other microbial types, it was found that Gram positive had higher tolerance to SOC than Gram negatives with the exception of Salmonella. MS2 bacteriophage was highly sensitive; however, Bacillus endospores were not inactivated by SOC. CONCLUSIONS: SOC inactivates E. coli O157:H7 and Salmonella through GSH oxidation and disruption of disulfide bonds. Ultimately, membrane damage resulting from prolonged exposure to SOC leads to the loss of cell viability. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide a basis for understanding why extended treatment times are required to inactivate bacteria using SOC.  相似文献   

19.
Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.  相似文献   

20.
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号