首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
Immunocytochemical techniques were used to identify human proinsulin chimeric protein in cytoplasmic inclusion bodies of genetically modified Escherichia coli. Antibodies to proinsulin chimeric protein (human proinsulin coupled at its amino-terminus to a portion of the E. coli tryptophan E gene product) were localized in E. coli using post-embedding staining with protein A-peroxidase labelling for transmission electron microscopy. The observable distribution of the labelled antibody was limited to that portion of the E. coli cytoplasm occupied by inclusion bodies. The localization of human peptides as insoluble masses within the bacterial cytoplasm has important implications in relation to the synthesis, recovery and purification of pharmacologically useful substances produced through the application of recombinant DNA technology.  相似文献   

2.
人胰岛素原类似物(BKRA)基因的合成与表达   总被引:4,自引:0,他引:4  
为了利用基因工程生产胰岛素,按照已知的人胰岛素A、B链氨基酸序列和大肠杆菌偏爱的氨基酸密码子设计并合成了人胰岛素原类似物(BKRA)基因,其中以赖(K)-精(R)二肽编码区取代人胰岛素原C肽编码区.为了避免其编码蛋白在大肠杆菌中表达时被降解,通过人工接头将2个BKRA基因串联起来,接头部分氨基酸序列为Arg-Arg-Asn-Ser.将串联的BKRA基因克隆到表达载体pET-28a(+),实现了在大肠杆菌中的融合表达,表达产物以包含体形式存在,约占细菌总蛋白24%.表达产物氨基末端具有六组氨酸肽段,以HiTrap凝胶进行亲和层析,一步纯化可达纯度95%以上.放射免疫测定表明,纯化的融合蛋白具有胰岛素抗原活性.表明已构建成人胰岛素原类似物的高效表达菌株  相似文献   

3.
A gene has been constructed which codes for an analog of human proinsulin in which the normal 35-amino acid connecting peptide is replaced by a "mini-C" peptide of six amino acids (Arg-Arg-Gly-Ser-Lys-Arg). The gene, composed of oligonucleotide fragments synthesized by the triester method, was cloned and expressed as a beta-galactosidase hybrid protein. The proinsulin analog was separated from beta-galactosidase by cyanogen bromide cleavage and purified. Controlled disulfide exchange in the S-sulfonate of the analog generated a molecule having high-pressure liquid chromatography (HPLC) and radioimmunoassay (RIA) behavior consistent with a proinsulin-like structure.  相似文献   

4.
The production of human proinsulin in Escherichia coli usually leads to the formation of inclusion bodies. As a consequence, the recombinant protein must be isolated, refolded under suitable redox conditions, and enzymatically converted to the biologically active insulin. In this study we describe a detailed in vitro renaturation protocol for human proinsulin that includes native structure formation and the enzymatic conversion to mature insulin. We used a His(8)-Arg-proinsulin that was renatured from the completely reduced and denatured state in the presence of a cysteine/cystine redox couple. The refolding process was completed after 10-30 min and was shown to be strongly dependent on the redox potential and the pH value, but not on the temperature. Refolding yields of 60-70% could be obtained even at high concentrations of denaturant (3M guanidinium-HCl or 4M urea) and protein concentrations of 0.5mg/ml. By stepwise renaturation a concentration of about 6 mg/ml of native proinsulin was achieved. The refolded proinsulin was correctly disulfide-bonded and native and monomeric as shown by RP-HPLC, ELISA, circular dichroism, and analytical gel filtration. Treatment of the renatured proinsulin with trypsin and carboxypeptidase B yielded mature insulin.  相似文献   

5.
Optimized Synthetic human insulin gene was preferred to easy of cloning, plasmid stability, and protein expression away from the native sequence and its rare codons. Two steps to obtain the insulin, so we assembled the gene of 293 bp using a battery of overlapped synthetic oligos, then cloned into pET101directional TOPO expression vector downstream to the T7 promoter. The proinsulin products were produced as inclusion bodies in E. coli at a level of 10%. The batch cultivation of the strain yielded 6 g/L, while the high cell density of fed-batch cultivation yielded 46 g/L. The proinsulin purification yielded 110 mg/gram cell weight, and 1.3 mg/gram of a bioactive insulin. The native insulin was generated by enzymatic conversion of chemically processed proinsulin. The produced insulin was matched with that of a commercial aqueous version at a level of enzyme immunoassys, SDS-PAGE, RP-HPLC, and bioactivity. The present results showed that the produced insulin has a comparable biochemical and potency similar to that of commercial one.  相似文献   

6.
A fully active analog of human parathyroid hormone (hPTH) has been produced by recombinant expression in Escherichia coli. Initially, a nucleotide sequence encoding hPTH(1-34)-Asp-Pro was ligated to a proinsulin gene in the plasmid pUC8, for the eventual expression of a fusion protein of 137 amino acids. Unexpectedly, the proinsulin gene and 340 bp downstream were deleted by an unknown mechanism during transformation of the E. coli. This resulted in a new plasmid encoding a small (72-amino acid) fusion product of hPTH(1-34)-Asp35-Pro36-X, where X is a 36-residue "arbitrary" downstream sequence of pUC8. The fusion product was efficiently expressed and the hPTH analog, [Asp35]hPTH-(1-35), was readily released by acid cleavage, with a yield of 100 mg/L. This analog had an effective concentration for half-maximal adenylyl cyclase stimulation (EC50) in rat osteosarcoma cells of 14 nM, which was identical to that for hPTH-(1-34). In the ovariectomized rat model of osteoporosis, [Asp35]hPTH-(1-35) was fully active as a bone anabolic agent.  相似文献   

7.
The propensity of a recombinant protein produced in bacteria to aggregate has been assumed to be unpredictable, and inclusion bodies have been thought of as wasted cell material. However, a target protein can be purposely driven to inclusion bodies, which demonstrate full cell tolerable activity. Sialic acid aldolase, N-terminally fused with the cellulose-binding module of Clostridium cellulovorans, was almost quantitatively physiologically aggregated into active inclusion bodies. These inclusion bodies were entrapped in alginate beads and crosslinked by glutaraldehyde. The immobilized biocatalyst generated by this crosslinked inclusion bodies (CLIB) technology was used in a repetitive batch protocol for sialic acid production that was monitored on-line by flow calorimetry. The required substrate, N-acetyl-D-mannosamine, was obtained by partially improved alkaline epimerization.  相似文献   

8.
Using oligo site-directed mutagenesis, we have modified our synthetic gene for human basic fibroblast growth factor (bFGF) to replace all four cysteine codons with serine codons. The corresponding protein was expressed in Escherichia coli and purified from inclusion bodies by solubilization in urea followed by a series of column chromatographies and a folding step. The resulting protein, having no cysteine residues, is unable to form either intramolecular or intermolecular disulfide bonds. The secondary and tertiary structures of the purified analog, as determined by circular dichroism and fluorescence spectroscopy, were identical within experimental error to recombinant bovine and human bFGF with unaltered amino acid sequences. Reflecting the similar conformation, the analog protein exhibited mitogenic activity on NIH 3T3 cells which was indistinguishable from the natural sequence molecule.  相似文献   

9.
The insulin-like growth factors, IGF-I and IGF-II, are single chain polypeptides, which are structurally related to proinsulin and promote proliferation and differentiation of cells in many vertebrate species. Previous attempts to produce recombinant salmon IGF-II (rsIGF-II) were compromised by low expression levels and co-purification of incorrectly cleaved protein with the authentic recombinant product. In this study, a gene containing the coding region for Atlantic salmon (Salmo salar) IGF-II was cloned into a modified pET32a expression vector and transformed into Escherichia coli BL21 trxB (DE3) cells. Upon growth and induction (with IPTG) of the transformant, recombinant salmon IGF-II (rsIGF-II) was expressed as an insoluble, 28kDa thioredoxin.sIGF-II fusion protein linked by a protease cleavage motif (trx.FAHY.sIGF-II) in inclusion bodies. The inclusion bodies were subsequently solubilized and the fusion protein was purified by Ni-affinity chromatography. Recombinant IGF-II (7.8kDa) was then released from the fusion partner using H64A subtilisin BPN' protease and purified by reversed-phase HPLC. Homogeneity of the final recombinant product was confirmed by N-terminal amino acid sequencing, ion-spray mass spectrometry, SDS-polyacrylamide gel electrophoresis, and analytical reversed-phase HPLC. The biological activity of rsIGF-II was demonstrated in cultured rat L6 myoblasts and was found to be approximately 9- and 5-fold less potent than recombinant human IGF-I and recombinant salmon IGF-I, respectively, a result similar to that demonstrated previously with other recombinant fish IGF-II's in non-homologous cell lines.  相似文献   

10.
Insulin-like growth factor 1 (IGF1), a therapeutic protein, is highly homologous to proinsulin in 3-dimensional structure. To highly express IGF1 in recombinant Escherichia coli, IGF1 was engineered to be fused with the 6-lysine tag and ubiquitin at its N-terminus (K6Ub-IGF1). Fed-batch fermentation of E. coli TG1/pAPT-K6Ub-IGF1 resulted in 60.8 g/L of dry cell mass, 18% of which was inclusion bodies composed of K6Ub-IGF1. Subsequent refolding processes were conducted using accumulated inclusion bodies. An environment of 50 mM bicine buffer (pH 8.5), 125 mM L-arginine, and 4 °C was chosen to optimize the refolding of K6Ub-IGF1, and 240 mg/L of denatured K6Ub-IGF1 was refolded with a 32% yield. The positive effect of L-arginine on K6Ub-IGF1 refolding might be ascribed to preventing unfolded K6Ub-IGF1 from undergoing self-aggregation and thus increasing its solubility. The simple dilution refolding, followed by cleavage of the fusion protein by site-specific UBP1 and chromatographic purification of IGF1, led production of authentic IGF1 with 97% purity and an 8.5% purification yield, starting from 500 mg of inclusion bodies composed of K6Ub-IGF1, as verified by various analytical tools, such as RP-HPLC, CD spectroscopy, MALDI-TOF mass spectrometry, and Western blotting. Thus, it was confirmed that L-arginine with an aggregation-protecting ability could be applied to the development of refolding processes for other inclusion body-derived proteins.  相似文献   

11.
Our previous methods for the generation of recombinant human proinsulin were inadequate in terms of reproducibility and yield. In addition, it was difficult to perform structure/function studies on proinsulin because of its tendency to form hexamers. We have developed an improved procedure, which overcomes many of the technical purification problems, and results in a potentially monomeric version of modified proinsulin. Inclusion bodies were prepared using a commercial bacterial lysis solution. The inclusion bodies were solubilized and the fusion protein's affinity tag was removed by chemical cleavage. The polypeptide was then reduced and transferred into a refolding buffer. Following an overnight incubation, only a single form of proinsulin was detected using analytical reversed-phase high-performance liquid chromatography. The refolded (H10D, P28K, and K29P)-human proinsulin (DKP-hPI) was subjected to a final purification step using reversed-phase chromatography. The method is reproducible and produces milligram quantities of purified DKP-hPI from a single liter of bacterial culture. The final product is greater than 95% pure and is suitable for use as a substrate for the propeptide convertase PC1.  相似文献   

12.
Abstract

Optimized Synthetic human insulin gene was preferred to easy of cloning, plasmid stability, and protein expression away from the native sequence and its rare codons. Two steps to obtain the insulin, so we assembled the gene of 293 bp using a battery of overlapped synthetic oligos, then cloned into pET101directional TOPO expression vector downstream to the T7 promoter. The proinsulin products were produced as inclusion bodies in E. coli at a level of 10%. The batch cultivation of the strain yielded 6 g/L, while the high cell density of fed‐batch cultivation yielded 46 g/L. The proinsulin purification yielded 110 mg/gram cell weight, and 1.3 mg/gram of a bioactive insulin. The native insulin was generated by enzymatic conversion of chemically processed proinsulin. The produced insulin was matched with that of a commercial aqueous version at a level of enzyme immunoassys, SDS‐PAGE, RP‐HPLC, and bioactivity. The present results showed that the produced insulin has a comparable biochemical and potency similar to that of commercial one.  相似文献   

13.
We have obtained evidence by autoradiography and immunocytochemistry that mature secretory granules of the pancreatic B-cell gain access to a lysosomal compartment (multigranular or crinophagic bodies) where the secretory granule content is degraded. Whereas the mature secretory granule content shows both insulin and C-peptide (proinsulin) immunoreactivities, in crinophagic bodies only insulin, but not C- peptide, immunoreactivity was detectable. The absence of C-peptide (proinsulin) immunoreactivity in multigranular bodies, i.e., in early morphological stages of lysosomal digestion, was compatible with the ready access and breakdown of C-peptide and/or proinsulin by lysosomal degrading enzymes, while the insulin crystallized in secretory granule cores remained relatively protected. However, in the final stage of lysosomal digestion, i.e., in residual bodies where the secretory granule core material is no longer present, insulin immunoreactivity became undetectable. Lysosomal digestion thus appears to be a normal pathway for insulin degradation in the pancreatic B-cell.  相似文献   

14.
Expression of a fusion protein composed of dihydrofolate reductase and a derivative of growth hormone-releasing factor resulted in the formation of inclusion bodies in Escherichia coli at 37 degrees C. Among various chemicals, such as detergents, protein denaturants, and acetic acid, tested for the ability to dissolve the inclusion bodies, acetic acid, Brij-35, deoxycholic acid sodium salts, guanidine-HCl, and urea showed a strong solubilizing effect without damaging the DHFR activity. Acetic acid was useful in terms of preparing GRF derivatives, since it could be easily removed by lyophilization, and this made it easy to perform the succeeding BrCN treatment for cutting out the GRF derivative from the fusion protein. The GRF derivative was purified by reversed phase HPLC from the BrCN digest of the acetic acid extract, and its growth hormone-releasing activity was demonstrated. However, for obtaining a highly purified fusion protein itself, solubilization of inclusion bodies by urea was preferred because urea was the only agent which did not cause serious precipitation of the regenerated fusion protein after 10-fold dilution of the extracted inclusion bodies with buffer. The fusion protein was highly purified by means of a methotrexate affinity chromatography.  相似文献   

15.
The peculiarities of molecular structures and the influence of reaction conditions on the folding efficiency of fusion proteins-biotechnological precursors of human insulin, expressed in Escherichia coli as inclusion bodies have been investigated. The fusion proteins contained proinsulin sequence with various leader peptides connected by an Arg residue to the insulin B-chain. The kind and the size of leader peptide do not have essential influence on folding efficiency. However, the efficiency of protein folding depends on the location of the (His)6 site, which is used for metal-chelating affinity chromatography. In our study the protein folding depends on the reaction medium composition (including additives), the presence of accompanied cell components, pH, temperature, concentrations of protein, and redox agents. A negative influence of nucleic acid and heavy metal ions on folding has been found. S-sulfonated fusion protein has proinsulin-like secondary structure (by CD-spectroscopy data) that is the key point for 95% efficient folding proceeding. Folded fusion proteins are transformed into insulin by enzymatic cleavage.  相似文献   

16.
Different parameters that influenced the formation of inclusion bodies in Escherichia coli during production of a fused protein consisting of protein A from Staphylococcus aureus and beta-galactosidase from E. coli were examined. The intracellular expression of the fused protein was controlled by the pR promoter and its temperature-sensitive repressor. The induction temperature, the pH of the cultivation medium, and changes in the amino acid sequence in the linker region between protein A and beta-galactosidase had a profound effect on the formation of inclusion bodies. At 42 degrees C, inclusion bodies were formed only during the first hours after induction, and thereafter all the recombinant protein that was further produced appeared in a soluble and active state. Production at 39 and 44 degrees C resulted in inclusion body formation throughout the production period with 15 to 20% of the produced recombinant protein appearing as inclusion bodies. Cultivating cells without control of pH caused inclusion body formation throughout the induction period, and inclusion body formation increased with decreasing pH, and at least part of the insoluble protein was formed from the pool of soluble fusion protein within the cell. Changes in the amino acid sequence in the linker region between the two parts of the fusion protein abolished inclusion body formation.  相似文献   

17.
Different parameters that influenced the formation of inclusion bodies in Escherichia coli during production of a fused protein consisting of protein A from Staphylococcus aureus and beta-galactosidase from E. coli were examined. The intracellular expression of the fused protein was controlled by the pR promoter and its temperature-sensitive repressor. The induction temperature, the pH of the cultivation medium, and changes in the amino acid sequence in the linker region between protein A and beta-galactosidase had a profound effect on the formation of inclusion bodies. At 42 degrees C, inclusion bodies were formed only during the first hours after induction, and thereafter all the recombinant protein that was further produced appeared in a soluble and active state. Production at 39 and 44 degrees C resulted in inclusion body formation throughout the production period with 15 to 20% of the produced recombinant protein appearing as inclusion bodies. Cultivating cells without control of pH caused inclusion body formation throughout the induction period, and inclusion body formation increased with decreasing pH, and at least part of the insoluble protein was formed from the pool of soluble fusion protein within the cell. Changes in the amino acid sequence in the linker region between the two parts of the fusion protein abolished inclusion body formation.  相似文献   

18.
Met-Lys-双C肽人胰岛素原基因的构建表达及分离纯化   总被引:2,自引:0,他引:2  
应用 P C R 定点突变方法构建编码 M et Lys 双 C 肽人胰岛素原基因,并在大肠杆菌中以包含体方式获得表达 表达产物经还原、重组、 Sephadex G 75 分离纯化,获得 M et Lys 双 C 肽人胰岛素原,经胰蛋白酶与羧肽酶 B的酶解, Resource T M Q 阴离子交换柱层析分离制备得人胰岛素,其放免活性、受体结合活性均与猪胰岛素相同   相似文献   

19.
A novel minicolumn chromatographic method to monitor the production of inclusion bodies during fermentation and an enzyme-linked immunosorbent assay (ELISA) system allowing direct analysis of the particles with surface-displayed antigens are described. A 33-kDa protein containing 306 amino acids with three sulfur bridges produced as inclusion bodies was labeled with polyclonal antibodies against 15 amino acid (anti-A15) and 17 amino acid (anti-B17) residues at the N- and C-terminal ends of the protein, respectively. Labeled particles were bound to macroporous monolithic protein A-cryogel adsorbents inserted into the open-ended wells of a 96-well plate (referred to as protein A-cryogel minicolumn plate). The concept behind this application is that the binding degree of inclusion bodies from lysed fermentation broth to the cryogel minicolumns increases with an increase in their concentration during fermentation. The technique allowed us to monitor the increase in the production levels of the inclusion bodies as the fermentation process progressed. The system also has a built-in quality parameter to ensure that the target protein has been fully expressed. Alternatively, inclusion bodies immobilized on phenyl-cryogel minicolumn plate were used in indirect ELISA based on anti-A15 and anti-B17 antibodies against terminal amino acid residues displayed on the surface of inclusion bodies. Drainage-protected properties of the cryogel minicolumns allow performance of successive reactions with tested immunoglobulin G (IgG) samples and enzyme-conjugated secondary IgG and of enzymatic reaction within the adsorbent.  相似文献   

20.
C Meban 《Histochemistry》1975,43(4):367-372
The fine structural localization of nonspecific alkaline phosphatase was studied in the granular pneumonocytes (type II alveolar epithelial cells) of hamster lung by incubating sections of glutaraldehyde-fixed tissues in a medium containing lead ions and sodium beta-glycerophosphate or alpha-naphthyl acid phosphate. The specificity of the reaction was tested by exposing the sections to inhibitors of alkaline phosphatase. The results showed that alkaline phosphatase activity was present in the inclusion bodies of granular pneumonocytes. The enzyme reaction was strong in the membrane lining the inclusion bodies and a weaker reaction was generally detectable in the inclusion contents. Although only a proportion of the inclusion bodies showed enzyme activity, there was no obvious correlation between the reactivity of the inclusions and their intracellular position or size. The other organelles were unreactive. The finding of alkaline phosphatase activity within the inclusion bodies of granular pneumonocytes is an enigma as these organelles are generally considered to be lyosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号