首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
DNA X-irradiated in oxygenated aqueous solution produces the formamido lesion from the breakdown of pyrimidine nucleosides. This pyrimidine breakdown product inhibits the hydrolysis by nuclease P1 of the phosphoester bond 3' to the damaged nucleoside. Consequently, the lesion can be obtained from an enzymatic digest of the DNA as a modified dinucleoside monophosphate in which the 5' nucleoside contains the lesion. In this form, the formamido lesion can be detected with good sensitivity by liquid chromatography-mass spectrometry (LC-MS). Nucleosides that have lost the base moiety also inhibit nuclease P1. Together, the formamido and abasic lesions account for all of the substantial peaks in the LC-MS ion current profile.  相似文献   

2.
A prominent lesion in DNA exposed to oxidative free radicals results from the degradation of thymine leaving a formamido remnant. A 32P-postlabeling assay has been developed for the detection of the formamido lesion. The assay is based on the circumstance that the lesion prevents hydrolysis by nuclease PI of the phosphoester bond 3' to the damaged nucleoside. Thus, a nuclease PI plus acid phosphatase digest of DNA generates mostly nucleosides whereas the formamido lesion is rendered as a modified dinucleoside monophosphate. Dinucleoside monophosphates, but not nucleosides, are apt substrates for 32P-postlabeling by polynucleotide kinase. The assay was applied to calf thymus DNA X-irradiated in oxygenated solution. The formamido lesion could be detected down to a dose of a few Gy.  相似文献   

3.
Evidence has been accumulating at the oligomer level that free radical-initiated DNA damage includes lesions in which two adjacent bases are both modified. Prominent examples are lesions in which a pyrimidine base is degraded to a formamido remnant and an adjacent guanine base is oxidized. An assay has been devised to detect double-base lesions based on the fact that the phosphoester bond 3' to a nuclesoside bearing the formamido lesion is resistant to hydrolysis by nuclease P1. The residual modified dinucleoside monophosphates obtained from a nuclease P1 (plus acid phosphatase) digest of DNA can be (32)P-postlabeled using T4 polynucleotide kinase. Using this assay the formamido single lesion and the formamido-8-oxoguanine double lesion were detected in calf thymus DNA after X-irradiation in oxygenated aqueous solution. The lesions were measured in the forms d(P(F)pG) and d(P(F)pG(H)), where P(F) stands for a pyrimidine nucleoside having the base degraded to a formamido remnant and G(H) stands for 8-oxo-deoxyguanosine. The yields in calf thymus DNA irradiated 60 Gy were 8.6 and 3.2 pmol/microgram DNA, respectively.  相似文献   

4.
The turnover rates for hydrolysis by nuclease P1 of the 16 unmodified dideoxynucleoside monophosphates were measured. In addition, the turnover rates were measured in a variety of dideoxynucleoside monophosphates containing free radical-induced base modifications. The modified bases included cis-5,6-dihydroxy-5,6-dihydrothymine (thymine glycol), 5,6-dihydrothymine, 5-hydroxymethyuracil, 8-hydroxyguanine, 5-hydroxy-5-methylhydantoin and the formamido remnant which can be derived from either a thymine or a cytosine base. The turnover rate for dinucleoside monophosphates containing 4,8-dihydro-4-hydroxy-8-oxo-guanine modifications, which are induced by singlet oxygen, were also measured. A model was devised for the hydrolysis of DNA by nuclease P1 which uses the observed turnover rates as parameters. The model predicts the abundance of monomers and dimers as hydrolysis proceeds. Whereas the level of monomers increases monotonically, the level of each dimer first increases and then falls off. There are advantages to phosphorylating dimers, as compared with monomers, using polynucleotide kinase. Consequently this model may be of interest in connection with 32P-postlabeling applied to the measurement of DNA damage in nuclease P1 partial hydrolysates of DNA.  相似文献   

5.
Molecular mechanics studies are performed on single stranded as well as base paired forms of dinucleoside methylphosphonates comprising different base sequences for both the S- and R-isomers of methylphosphonate (MP). S-MP produces noticeable distortions in the geometry, locally at the phosphate center, and this enables the stereochemical feasibility of compact g- g- phosphodiester. Besides, it tends to perturb the conformations around the P-O3' and glycosyl bonds, causing minor variations in stacking interactions. In single stranded dinucleosides, the gain in adjacent base stacking interaction energies seems to be sufficient to overcome the barrier to P-O3' bond rotation arising due to S-MP...sugar interaction, and this results in transition to a compact phosphodiester (BI-type) from an initial extended phosphodiester (BII-type) conformation. Such a thing seems rather difficult in base pair constrained duplexes. Dinucleosides with R-MP behave analogous to normal phosphate duplexes as the methyl group is away from the sugar. It is found that dinucleoside methylphosphonates are energetically less favoured than the corresponding dinucleoside phosphates mainly due to the depletion of contributions from electrostatic attractive interactions involving the base and sugar with the methylphosphonate consequent to the nonionic nature of the latter. Neither S-MP nor R-MP seem to significantly alter the stereochemistry of duplex structure.  相似文献   

6.
The products produced by X irradiation of an oxygenated aqueous solution containing d(CpApTpG) were analyzed by NMR spectroscopy and mass spectrometry. Thirteen different base modifications were detected, including a novel product formed by the addition of oxygen to guanine. Seven different strand break products were identified, including strands having 5'-phosphoryl groups, 3'-phosphoryl groups and groups having 3'-phosphoglycolates as termini. The products produced in largest yield contained base modifications: Pyrimidine bases degraded to a formamido moiety, the 8-oxo-7,8-dihydroguanine (8-oxoguanine) lesion, and double base lesions in which both the 8-oxo-7,8-dihydroguanine lesion and a formamido remnant are present.  相似文献   

7.
Abstract

Molecular mechanics studies are performed on single stranded as well as base paired forms of dinucleoside methylphosphonates comprising different base sequences for both the Sand R-isomers of methylphosphonate (MP). S-MP produces noticeable distortions in the geometry, locally at the phosphate center, and this enables the stereochemical feasibility of compact g? g? phosphodiester. Besides, it tends to perturb the conformations around the P- 03′ and glycosyl bonds, causing minor variations in stacking interactions. In single stranded dinucleosides, the gain in adjacent base stacking interaction energies seems to be sufficient to overcome the barrier to P-03′ bond rotation arising due to S-MP…sugar interaction, and this results in transition to a compact phosphodiester (BI-type) from an initial extended phosphodiester (BII-type) conformation. Such a thing seems rather difficult in base pair constrained duplexes. Dinucleosides with R-MP behave analogous to normal phosphate duplexes as the methyl group is away from the sugar. It is found that dinucleoside methylphosphonates are energetically less favoured than the corresponding dinucleoside phosphates mainly due to the depletion of contributions from electrostatic attractive interactions involving the base and sugar with the methylphosphonate consequent to the nonionic nature of the latter. Neither S-MP nor R-MP seem to significantly alter the stereochemistry of duplex structure.  相似文献   

8.
The self-complementary 5'-phosphorylated dinucleoside 3' (N)----5' (P)-linked phosphoramidates with sequence GC (8a), CG (8b) and the tetranucleoside triphosphoramidate with sequence GCGC (10a) and CGCG (10b) have been synthesized and characterized by physicochemical and enzymatic methods. The dinucleosides 8a or 8b oligomerize in aqueous solution in the presence of a water-soluble carbodiimide. This process is efficient and regiospecific. In the case of GC it produces alternating 3' (N)----5' (P)-linked phosphoramidates up to 15 dimeric units in length with a yield in excess of 70%. The oligomerization of the CG isomer is much less efficient. The mechanism of oligomerization is discussed.  相似文献   

9.
Dithymidine-3'-S-phosphorothioate (d(TspT)) has been prepared from a 5'-O-monomethoxytritylthymidine-3'-S-phosphorothioamidite (7) by activation with 5-(p-nitrophenyl)tetrazole in the presence of 3'-O-acetylthymidine. The resulting dinucleoside phosphorothioite is readily oxidised to the corresponding 3'-S-phosphorothioate using either tetrabutylammonium (TBA) periodate or TBA oxone and has been deprotected under standard conditions to yield d(TspT). This dithymidine phosphate analogue is comparatively resistant to hydrolysis by nuclease P1, but the P-S bond is readily cleaved by aqueous solutions of either iodine or silver nitrate. Dithymidine-3'-S-phosphorodithioate (d[Tsp(s)T]) was prepared in an analogous fashion using sulphur to oxidise the intermediate dinucleoside phosphorothioite. Absolute stereochemistry has been assigned to the diastereoisomers of d[Tsp(s)T] by comparing their physical and chemical properties to those of the dinucleoside phosphorothioates.  相似文献   

10.
A crosslinked dinucleoside, 1,2-(diguanosin-7-yl) ethane, has been isolated from the reaction of guanosine with the antitumor agent, BCNU. The formation of this product suggests that DNA crosslinking, which may be responsible for the cytotoxicity of BCNU, could occur through such dinucleosides.  相似文献   

11.
Phthalocyanine mediated photosensitization of 2'-deoxyguanosine (dG) in oxygen saturated aqueous solution has previously been shown to result in the addition of molecular oxygen to the guanine base generating the 4R* and 4S* diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2'-deoxyguanosine (dO) (the asterisk denotes unambiguous assignment of the 4R and 4S diastereoisomers). The data presented here show that the same guanine modified bases are generated in a 1:1 ratio when thymidylyl-(3',5')-2'-deoxyguanosine (d(TpG)) is similarly photo-oxidized. These modified dinucleoside monophosphates, labelled d(TpO)-A and -B, have been isolated by high performance liquid chromatography and characterized by proton NMR spectrometry, fast atom bombardment mass spectrometry, and enzymatic digestions. Photosensitization in D2O instead of H2O leads to an increase in the rate of d(TpO) formation that is consistent with a type II (singlet oxygen) reaction mechanism. Three interesting properties of these modified dinucleoside monophosphates are: i) the rate of their digestion with spleen phosphodiesterase is greatly reduced relative to d(TpG), ii) they are not digested by snake venom phosphodiesterase, and iii) they are stable to 1.0 M piperidine at 90 degrees C for 30 min. The latter observation indicates that 4,8-dihydro-4-hydroxy-8-oxoguanine is not a base lesion responsible for the strand breaks observed following hot piperidine treatment of DNA exposed to type II photosensitizers or chemically generated singlet oxygen.  相似文献   

12.
The mediation of radiation-induced damage to dinucleoside monophosphate by oxygen and by glutathione was studied. The sequence isomers d(TpA) and d(ApT) were X-irradiated in aqueous solutions and the products isolated by reverse-phase high-performance liquid chromatography. The main products were characterized by proton NMR spectroscopy. In the presence of oxygen the principal products are the formamido derivative formed by breakdown of thymine and the aldehyde derivative formed at the 5' end of the dinucleoside monophosphate, both nucleoside monophosphates and free bases. In the presence of glutathione, the two stereoisomers of the 5,6-dihydrothymine derivatives are prominent. Radiation-induced damage to d(TpA) and d(ApT) in the solid state was also studied.  相似文献   

13.
T R Krugh  J W Laing  M A Young 《Biochemistry》1976,15(6):1224-1228
A proton magnetic resonance study of the chemical shifts of a series of ribodinucleoside monophosphates in neutral H2O solution has been recorded in the 1-100 mM concentration range. The self-complementary dinucleoside monophosphates CpG and GpC and the complementary mixture GpU + ApC form intermolecular hydrogen-bonded complexes at low temperatures. The amino proton chemical shifts in the CpG and GpC spectra are consistent with the formation of a miniature double helical dimer in neutral aqueous solution at low temperatures (approximately 2 degrees C). The complementary mixture of dinucleosides GpU + ApC formed much less stable complexes than either GpC or CpG, while UpA did not show any indication of the formation of intermolecular hydrogen-bonded complexes. This result is consistent with the well-known observation that the stability of a double helix is proportional to the percent of G-C base pairs present.  相似文献   

14.
The following procedures have been used to prepare fifteen modified dinucleoside monophosphates: (a) bisulfite-catalyzed transamination with aniline to give an N4-phenylcytidine (CPh), (b) bisulfite-catalyzed transamination with beta-naphthylamine to give an N4-beta-naphthylcytidine (CbetaN), (c) alkylation with 7-bromomethylbenz[a] anthracene to afford a 7(benz[a]anthryl-7-methyl)guanosine (GMBA), and (d) reaction with N-acetoxy-2-acetylaminofluorene to give an 8-(N-2-fluorenylacetamido)guanosine (GAAF). The compounds prepared were A-CPh, CPh-A, CPh-G, U-CPh, CPh-U, A-CbetaN, CbetaN-A, G-CbetaN, CbetaN-G, U-CbetaN, CbetaN-U, GMBA-U, U-GMBA, GAAF-U, and U-GAAF. All of the modified compounds were hydrolyzed to the expected monomers with venom and spleen exonucleases. Hydrolysis by micrococcal nuclease was inhibited in the following cases: A-CPh, A-CbetaN, U-GMBA, and U-GAAF. The first three reactions above were applied to denatured calf thymus DNA to prepare modified DNA samples containing from 0.3 to 2.0% bound aromatic residues. The modified nucleic acids were completely hydrolyzed to nucleosides by the combination of venom exonuclease, deoxyribonuclease I and alkaline phosphatase. The same results were obtained with a combination of spleen exonuclease, deoxyribonuclease II, and alkaline phosphatase. Hydrolysis of the modified nucleic acids by micrococcal nuclease and alkaline phosphatase afforded primarily nucleosides, with some dinucleoside monophosphates. The amount of the latter did not exceed that found in the hydrolysis of control DNA, however. Other workers have observed inhibition of enzymatic hydrolysis of nucleic acids modified by aromatic carcinogens. We postulated that their results may have been caused by cross-links, which were avoided in our studies.  相似文献   

15.
A 32P-postlabeling assay has been developed for the simultaneous detection of the thymine glycol lesion and the formamido remnant of pyrimidine bases in DNA exposed to reactive oxygen species (ROS). The formamido lesion is a principal lesion produced in X-irradiated DNA oligomers when oxygen is available to mediate the damage process. Production of the well-known thymine glycol lesion is less dependent on the concentration of oxygen. These two lesions have the common property that they make the phosphoester bond 3' to the modified nucleoside resistant to hydrolysis by nuclease P1. Our assay uses 32P-postlabeling to measure these lesions in the form of modified dimers obtained from DNA by nuclease P1 digestion. Appropriate carriers and internal standards have been chemically synthesized to improve the reliability and accuracy of the assay. The measurements were accomplished on 1-microgram samples of DNA.  相似文献   

16.
A graphical method is presented for the generation of helical parameters from single-crystal structures of RNA nucleic acid fragments that are minimally dinucleosides. The method is compared with other published procedures, for a number of text examples. The RNA double helices generated from three different salts of the dinucleoside monophosphate GpC are examined in relation to the variations in helix morphology that are produced. It is shown that small differences between these GpC salts can be amplified to very distinct helix characteristics.  相似文献   

17.
Abstract

A graphical method is presented for the generation of helical parameters from single-crystal structures of RNA nucleic acid fragments that are minimally dinucleosides. The method is compared with other published procedures, for a number of text examples. The RNA double helices generated from three different salts of the dinucleoside monophosphate GpC are examined in relation to the variations in helix morphology that are produced. It is shown that small differences between these GpC salts can be amplified to very distinct helix characteristics.  相似文献   

18.
A combination of high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy was used to analyze the products of X-irradiated aqueous solutions of the dinucleoside monophosphate thymidylyl(3'-5')-2'-deoxyadenosine, d(TpA), and its sequence isomer 2'-deoxyadenylyl(3'-5')thymidine, d(ApT). The products of d(TpA) include both bases and nucleotides and a variety of thymine modifications of d(TpA) including the two cis and two trans glycol stereoisomers, two cis monohydroxy derivatives, an N-formamide derivative, and the hydroxymethyl derivative. Attention is focused on using NMR spectral features to distinguish among the various stereoisomers. The radiation chemistry of d(ApT) is also explored and differences in product formation compared with d(TpA) are described, particularly the formation of two products involving modification of adenine base. The potential of the HPLC-NMR approach to the study of radiation chemistry in DNA model compounds is discussed.  相似文献   

19.
The 31P-NMR spectrum of the dodecamer d(GACGATATCGTC).   总被引:1,自引:1,他引:0       下载免费PDF全文
The resonances in the 31P-NMR spectrum of the dodecamer d(GACGATATCGTC) have been assigned by regiospecific labelling with oxygen-17. All 11 resonances are clearly resolved at 26 degrees C. Most noticeably, individual resonances of the dinucleoside phosphates d(CpG), d(TpC), d(GpA) and d(ApT) which occur more than once can clearly be distinguished. This indicates that the position of the phosphate group in the oligomer influences its 31P-NMR shift. This observation is in agreement with what has been found for the 31P-NMR spectra of d(CGCGAATTCGCG) [Ott, J. and Eckstein, F. (1985) Biochemistry 24] and d(GGAATTCC) [Connolly, B.A. and Eckstein, F. (1984) Biochemistry 23, 5523-5527]. In general, the chemical shift appears the more at higher field the more central the dinucleoside phosphate is located in the oligomer. Exceptions are the resonances of dinucleoside phosphates of the type 5'-PyPu-3' which appear at lower field than expected from this rule. A reasonable correlation between 31P-NMR chemical shifts and the sum function of the base plane roll angles derived from Calladine's rule [Calladine, C.R. (1982) J. Mol. Biol. 161, 343-352] exists.  相似文献   

20.
The dinucleoside monophosphates, ApU and UpA, react with potassium osmate (VI) and 2,2'-bipyridyl to form the corresponding oxo-osmium (VI) bipyridyl sugar ester in which the osmate group is bonded to the terminal 2',3'-glycol. Osmium (VIII) tetroxide and 2,2'-bipyridyl react with the dinucleosides to form the corresponding oxo-osmium (VI) bipyridyl heterocyclic esters which result from addition of the tetroxide to the 5,6-double bond of the uracil residue. Although capable of transesterification reactions, these heterocyclic esters are exceptionally stable toward exchange reactions in solution. No apparent exchange was observed after 1 month. This reaction thus seems promising for single-site osmium labeling in polynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号