首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PRP2 protein of Saccharomyces cerevisiae is required for the pre-mRNA splicing reaction but not for the early stages of spliceosome assembly. Using anti-PRP2 antibodies we demonstrate that PRP2 protein is associated with spliceosomes prior to, and throughout step 1 of the splicing reaction. Heat-inactivated prp2 protein, by contrast, does not seem to associate with spliceosomes. By elution of electrophoretically distinct spliceosomal complexes from non-denaturing gels we identify the specific complex with which PRP2 initially interacts in the pathway of spliceosome assembly.  相似文献   

2.
We have investigated the role of a novel temperature-sensitive splicing mutation, prp18. We had previously demonstrated that an accumulation of the lariat intermediate of splicing occurred at the restrictive temperature in vivo. We have now used the yeast in vitro splicing system to show that extracts from this mutant strain are heat labile for the second reaction of splicing. The heat inactivation of prp18 extracts results from loss of activity of an exchangeable component. Inactivated prp18 extracts are complemented by heat-inactivated extracts from other mutants or by fractions from wild-type extracts. In heat-inactivated prp18 extracts, 40S splicing complexes containing lariat intermediate and exon 1 can assemble. The intermediates in this 40S complex can be chased to products by complementing extracts in the presence of ATP. Both complementation of extracts and chasing of the isolated prp18 spliceosomes takes place with micrococcal nuclease-treated extracts. Furthermore, the complementation profile with fractions of wild-type extracts indicates that the splicing defect results from a mutation in a previously designated factor required for the second step of splicing. The isolation of this mutant as temperature-sensitive lethal has also facilitated cloning of the wild-type allele by complementation.  相似文献   

3.
4.
J R Maddock  J Roy    J L Woolford  Jr 《Nucleic acids research》1996,24(6):1037-1044
We have identified six new genes whose products are necessary for the splicing of nuclear pre-mRNA in the yeast Saccharomyces cerevisiae. A collection of 426 temperature-sensitive yeast strains was generated by EMS mutagenesis. These mutants were screened for pre-mRNA splicing defects by an RNA gel blot assay, using the intron- containing CRY1 and ACT1 genes as hybridization probes. We identified 20 temperature-sensitive mutants defective in pre-mRNA splicing. Twelve appear to be allelic to the previously identified prp2, prp3, prp6, prp16/prp23, prp18, prp19 or prp26 mutations that cause defects in spliceosome assembly or the first or second step of splicing. One is allelic to SNR14 encoding U4 snRNA. Six new complementation groups, prp29-prp34, were identified. Each of these mutants accumulates unspliced pre-mRNA at 37 degrees C and thus is blocked in spliceosome assembly or early steps of pre-mRNA splicing before the first cleavage and ligation reaction. The prp29 mutation is suppressed by multicopy PRP2 and displays incomplete patterns of complementation with prp2 alleles, suggesting that the PRP29 gene product may interact with that of PRP2. There are now at least 42 different gene products, including the five spliceosomal snRNAs and 37 different proteins that are necessary for pre-mRNA splicing in Saccharomyces cerevisiae. However, the number of yeast genes identifiable by this approach has not yet been exhausted.  相似文献   

5.
An essential pre-mRNA splicing factor, the product of the PRP38 gene, has been genetically identified in a screen of temperature-sensitive mutants of Saccharomyces cerevisiae. Shifting temperature-sensitive prp38 cultures from 23 to 37 degrees C prevents the first cleavage-ligation event in the excision of introns from mRNA precursors. In vitro splicing inactivation and complementation studies suggest that the PRP38-encoded factor functions, at least in part, after stable splicing complex formation. The PRP38 locus contains a 726-bp open reading frame coding for an acidic 28-kDa polypeptide (PRP38). While PRP38 lacks obvious structural similarity to previously defined splicing factors, heat inactivation of PRP38, PRP19, or any of the known U6 (or U4/U6) small nuclear ribonucleoprotein-associating proteins (i.e., PRP3, PRP4, PRP6, and PRP24) leads to a common, unexpected consequence: intracellular U6 small nuclear RNA (snRNA) levels decrease as splicing activity is lost. Curiously, U4 snRNA, normally extensively base paired with U6 snRNA, persists in the virtual absence of U6 snRNA.  相似文献   

6.
7.
We have characterized Cox16p, a new cytochrome oxidase (COX) assembly factor. This protein is encoded by COX16, corresponding to the previously uncharacterized open reading frame YJL003w of the yeast genome. COX16 was identified in studies of COX-deficient mutants previously assigned to complementation group G22 of a collection of yeast pet mutants. To determine its location, Cox16p was tagged with a Myc epitope at the C terminus. The fusion protein, when expressed from a low-copy plasmid, complements the mutant and is detected solely in mitochondria. Cox16p-myc is an integral component of the mitochondrial inner membrane, with its C terminus exposed to the intermembrane space. Cox16 homologues are found in both the human and murine genomes, although human COX16 does not complement the yeast mutant. Cox16p does not appear to be involved in maturation of subunit 2, copper recruitment, or heme A biosynthesis. Cox16p is thus a new protein in the growing family of eukaryotic COX assembly factors for which there are as yet no specific functions known. Like other recently described nuclear gene products involved in expression of cytochrome oxidase, COX16 is a candidate for screening in inherited human COX deficiencies.  相似文献   

8.
When incubated at a restrictive temperature, Saccharomyces cerevisiae sec59 mutant cells accumulate inactive and incompletely glycosylated forms of secretory proteins. Three different secretory polypeptides (invertase, pro-alpha-factor, and pro-carboxypeptidase Y) accumulated within a membrane-bounded organelle, presumably the endoplasmic reticulum, and resisted proteolytic degradation unless the membrane was permeabilized with detergent. Molecular cloning and DNA sequence analysis of the SEC59 gene predicted an extremely hydrophobic protein product of 59 kilodaltons. This prediction was confirmed by reconstitution of the sec59 defect in vitro. The alpha-factor precursor, which was translated in a soluble fraction from wild-type cells, was translocated into, but inefficiently glycosylated within, membranes from sec59 mutant cells. Residual glycosylation activity of membranes of sec59 cells was thermolabile compared with the activity of wild-type membranes. Partial restoration of glycosylation was obtained in reactions that were supplemented with mannose or GDP-mannose, but not those supplemented with other sugar nucleotides. These results were consistent with a role for the Sec59 protein in the transfer of mannose to dolichol-linked oligosaccharide.  相似文献   

9.
In eukaryotes, the posttranslational conjugation of ubiquitin to various cellular proteins marks them for degradation. Interestingly, several proteins have been reported to contain ubiquitin-like (ub-like) domains that are in fact specified by the DNA coding sequences of the proteins. The biological role of the ub-like domain in these proteins is not known; however, it has been proposed that this domain functions as a degradation signal rendering the proteins unstable. Here, we report that the product of the Saccharomyces cerevisiae RAD23 gene, which is involved in excision repair of UV-damaged DNA, bears a ub-like domain at its amino terminus. This finding has presented an opportunity to define the functional significance of this domain. We show that deletion of the ub-like domain impairs the DNA repair function of RAD23 and that this domain can be functionally substituted by the authentic ubiquitin sequence. Surprisingly, RAD23 is highly stable, and the studies reported herein indicate that its ub-like domain does not mediate protein degradation. Thus, in RAD23 at least, the ub-like domain affects protein function in a nonproteolytic manner.  相似文献   

10.
Deletion of the Saccharomyces cerevisiae gene YOL008W, here referred to as COQ10, elicits a respiratory defect as a result of the inability of the mutant to oxidize NADH and succinate. Both activities are restored by exogenous coenzyme Q2. Respiration is also partially rescued by COQ2, COQ7, or COQ8/ABC1, when these genes are present in high copy. Unlike other coq mutants, all of which lack Q6, the coq10 mutant has near normal amounts of Q6 in mitochondria. Coq10p is widely distributed in bacteria and eukaryotes and is homologous to proteins of the "aromatic-rich protein family" Pfam03654 and to members of the START domain superfamily that have a hydrophobic tunnel implicated in binding lipophilic molecules such as cholesterol and polyketides. Analysis of coenzyme Q in polyhistidine-tagged Coq10p purified from mitochondria indicates the presence 0.032-0.034 mol of Q6/mol of protein. We propose that Coq10p is a Q6-binding protein and that in the coq10 mutant Q6 it is not able to act as an electron carrier, possibly because of improper localization.  相似文献   

11.
12.
We identified a 180-kilodalton plasma membrane protein in Saccharomyces cerevisiae required for high-affinity transport (uptake) of potassium. The gene that encodes this putative potassium transporter (TRK1) was cloned by its ability to relieve the potassium transport defect in trk1 cells. TRK1 encodes a protein 1,235 amino acids long that contains 12 potential membrane-spanning domains. Our results demonstrate the physical and functional independence of the yeast potassium and proton transport systems. TRK1 is nonessential in S. cerevisiae and maps to a locus unlinked to PMA1, the gene that encodes the plasma membrane ATPase. Haploid cells that contain a null allele of TRK1 (trk1 delta) rely on a low-affinity transporter for potassium uptake and, under certain conditions, exhibit energy-dependent loss of potassium, directly exposing the activity of a transporter responsible for the efflux of this ion.  相似文献   

13.
14.
A number of Saccharomyces cerevisiae membrane-bound oxidoreductases were examined for potential roles in microsomal fatty acid elongation, by assaying heterologous elongating activities in individual deletion mutants. One yeast gene, YBR159w, was identified as being required for activity of both the Caenorhabditis elegans elongase PEA1 (F56H11.4) and the Arabidopsis thaliana elongase FAE1. Ybr159p shows some limited homology to human steroid dehydrogenases and is a member of the short-chain alcohol dehydrogenase superfamily. Disruption of YBR159w is not lethal, in contrast to previous reports, although the mutants are slow growing and display high temperature sensitivity. Both Ybr159p and an Arabidopsis homologue were shown to restore heterologous elongase activities when expressed in ybr159Delta mutants. Biochemical characterization of microsomal preparations from ybr159Delta cells revealed a primary perturbation in beta-ketoacyl reduction, confirming the assignment of YBR159w as encoding a component of the microsomal elongase.  相似文献   

15.
16.
Coenzyme Q (Q) is a lipid that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. There are eight complementation groups of Q-deficient Saccharomyces cerevisiae mutants, designated coq1-coq8. Here we have isolated the COQ6 gene by functional complementation and, in contrast to a previous report, find it is not an essential gene. coq6 mutants are unable to grow on nonfermentable carbon sources and do not synthesize Q but instead accumulate the Q biosynthetic intermediate 3-hexaprenyl-4-hydroxybenzoic acid. The Coq6 polypeptide is imported into the mitochondria in a membrane potential-dependent manner. Coq6p is a peripheral membrane protein that localizes to the matrix side of the inner mitochondrial membrane. Based on sequence homology to known proteins, we suggest that COQ6 encodes a flavin-dependent monooxygenase required for one or more steps in Q biosynthesis.  相似文献   

17.
18.
19.
20.
PRP6 and PRP9 are two yeast genes involved in pre-mRNA splicing. Incubation at 37 degrees C of strains that carry temperature-sensitive mutations at these loci inhibits splicing, and in vivo experiments suggested that they might be involved in commitment complex formation (P. Legrain and M. Rosbash, Cell 57:573-583, 1989). To examine the specific role that the PRP6 and PRP9 products may play in splicing or pre-mRNA transport to the cytoplasm, we have characterized in vitro splicing and spliceosome assembly in extracts derived from prp6 and prp9 mutant strains. We have also characterized RNAs that are specifically immunoprecipitated with the PRP6 and PRP9 proteins. Both approaches indicate that PRP6 encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein and that the PRP9 protein is required for a stable U2 snRNP-substrate interaction. The results are discussed with reference to the previously observed in vivo phenotypes of these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号