首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic control and heritability of Agrobacterium tumefaciens susceptibility was investigated using a doubled haploid (DH) mapping population of Brassica oleracea and the associated RFLP map. Preliminary studies were carried out by analysis of an 8×8 diallel, for which the parental lines were selected to include a range of susceptibilities to A. tumefaciens. The variation observed within the diallel was attributed to both additive and dominant gene effects, with additive gene effects being more important. A broad sense heritability value of 0.95 suggested that 95% of the observed variation was due to genetic effects, with just 5% attributed to non-genetic or environmental effects. A high narrow-sense heritibility value of 0.79 suggested that 79% of this trait was controlled by additive gene effects and, therefore, the potential to introduce this trait into breeding material is high. Fifty-nine DH lines from the mapping population were screened for susceptibility towards A. tumefaciens. Variation in susceptibility was observed across the population. The results of the DH screen were entered into the mapping programme MAPQTL and a highly significant quantitative trait loci (QTL) associated with susceptibility to A. tumefaciens was identified on linkage group 09. The use of substitution lines covering this region confirmed the location of this QTL. This work shows that susceptibility to A. tumefaciens is a heritable trait, and the transfer of susceptibility into resistant lines is demonstrated. These findings may help to overcome genotype restrictions to genetic transformation.Communicated by G. Wenzel  相似文献   

2.
Quantitative trait loci (QTLs) controlling the plant-regeneration ability of Brassica oleracea protoplasts were mapped in a population of 128 F2 plants derived from a cross between the high-responding, rapid-cycling line and a low-responding, broccoli breeding line of B. oleracea. A modified bulked segregant analysis with AFLP markers identified two QTLs for plant regeneration. In a multiple regression analysis, the two QTLs explained 83% of the total genetic variation for regeneration recorded 15 weeks after initial transfer of microcalli to regeneration medium. Both QTLs showed additive effects, and the alleles contributing to the high regeneration frequencies were derived from the high-responding, rapid-cycling line. Using microsatellites with known location, the two QTLs were mapped to linkage groups O2 and O9 on the map published by Sebastian et al. [(2000) Theor Appl Genet 100:75–81] or to chromosomes C8 and C7 on the map published by Saal et al. [(2001) Theor Appl Genet 102:695–699]. QTLs for the early flowering trait of the rapid-cycling parent have previously been mapped to the same two linkage groups. Association between flowering time and regeneration ability was, however, not found in the present material, indicating that plant-regeneration ability can be transferred between cultivars independently of the early flowering trait. The detection of two major QTLs for plant regeneration in B. oleracea may provide the initial step towards the identification of markers suitable for marker-assisted selection of regeneration ability.  相似文献   

3.
Rapid-cycling fast plants (Brassica rapa; RCBr) is also known as Wisconsin Fast Plant and is widely used in K-12 and undergraduate studies. RCBr has a short generation time (seed-to-seed in 30–60 days), which allows for the completion of experiments in a semester. Previous studies have shown that cotyledonary explants with attached petioles are capable of generating shoots. However, there is no published adventitious shoot regeneration protocol to date. Sterile cotyledonary explants were excised; all edges and petioles were removed. Five-day-old cotyledonary explants produced shoots on a Murashige and Skoog medium containing 1.5 mg/L thiadiazuron (TDZ) and 0.5 mg/L 1-naphthaleneacetic acid (NAA) (FPM I) at a mean rate of 8.8%. This rate increased to 14.8% in explants placed on FPM I medium supplemented with 5.0 mg/L silver nitrate (AgNO3) (SRM 2). The rate increased to 32.5% when 5-day-old explants, excised from the part of the cotyledon nearest to the petiole, were placed adaxial side up on SRM 2 medium. The shoot regeneration rate increased to 44.5% using 4-day-old cotyledonary explants. A shoot regeneration rate of 23% was observed among 9-day-old leaf explants. Shoots from cotyledonary explants were elongated on basal medium with 0.5 mg/L NAA, rooted on basal medium, and later acclimatized. This is the first report of shoot regeneration from cotyledonary explants of rapid-cycling Brassica rapa without pre-existing meristematic tissues.  相似文献   

4.
5.
To investigate the potential of heterologous transposons as a gene-tagging system in broccoli (Brassica oleracea var. italica), we have introduced a Dissociation (Ds)-based two-element transposon system. Ds has been cloned into a 35S-SPT excision-marker system, with transposition being driven by an independent 35S-transposase gene construct. In three successive selfed generations of plants, there was no evidence of germinal-excision events. In a previous study, we overcame this apparent inability to produce B. oleracea plants with germinal excisions by performing a novel tissue-culture technique to select for fully green shoots from seed with somatic excision events. The results showed a very high efficiency of regeneration of fully green plants (up to 65%), and molecular analysis showed that the plants contained the equivalent of a germinal-excision event. In this study, we followed the previous work by using inverse and nested PCR to generate probes of flanking genomic DNA adjacent to independently reinserted Ds elements, and these were hybridised to DNA from a double-haploid mapping population of B. oleracea. Seventeen Ds insertions and the original Ds T-DNA site have been localised, and these are spread over six (out of nine) linkage groups. Distribution of inserts show that 15 were found on a different linkage group to the original launch site, and of these 11 were found to be clustered on two separate groups. Previous studies in other plant species have found that germinal excision of Ds predominantly moves to sites linked close to the donor site. However, this study shows a potential to produce plants with Ds insertion scattered over many unlinked sites.Comunicated by C. Möllers  相似文献   

6.
Zhu XY  Zhao M  Ma S  Ge YM  Zhang MF  Chen LP 《Plant cell reports》2007,26(10):1727-1732
The chimeras between tuber mustard (Brassica juncea) and red cabbage (B. oleracea) were artificially synthesized in our previous study. Adventitious shoots were induced from nodal segments and leaf discs of TCC (LI-LII-LIII, LI -the outmost layer of shoot apical meristem; LII -the middle layer; LIII -the innermost layer. T = Tuber mustard, C = Red cabbage) chimeras. The origin of the shoots was analyzed by histology and molecular biology. As a result, the frequency of adventitious shoot induction rose with the increase of BA in MS medium in the area of the nodes. However, there was no different induction frequency of adventitious shoots from nodal segment bases in media with different BA concentrations. Most adventitious shoots (clustered shoots) arising from the node area were TTT (Tuber mustard- Tuber mustard- Tuber mustard) and only 4 shoots were chimeras, which indicated that more shoots originated from LI than from LII and LIII. All shoots from nodal segment bases were CCC (Red cabbage-Red cabbage- Red cabbage), indicating that the shoots originated from LII or LII and LIII. There were significant differences in the regeneration rate in the margin of the leaf discs among the three combinations of BA and NAA. Most adventitious shoots from the margin of leaf discs were CCC but 2 out of 70 were chimeras, which indicated that more shoots originated from LII or LII and LIII than from LI. All chimeras obtained by regeneration were different from the original explant donor in type in the present study. The origin of the adventitious shoots varied with the site of origin on the donor plant, and could be multicellular and multihistogenic.  相似文献   

7.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

8.
We have analyzed the expression patterns of two Fox genes, FoxE and FoxQ, in the ascidian Ciona intestinalis. Expression of Ci-FoxE was specific to the endostyle of adults, being prominent in the thyroid-equivalent region of zone 7. Ci-FoxQ was expressed in several endodermal organs of adult ascidians, such as the endostyle, branchial sac and esophagus. In the endostyle, the pattern of Ci-FoxQ expression was similar to that of CiTTF-1, being prominent in the thyroid-equivalent regions of zones 7 and 8. Therefore, these Fox genes may perform thyroid-equivalent functions in the ascidian endostyle.Edited by N. Satoh  相似文献   

9.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency of responding explants (85%) and maximum number of shoots per explant (9.5) were obtained on MS medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the orginal cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid after 25 d of culture. Fifty percent of shoots were also directly rooted as microcuttings on peat moss, soil, and compost mixture (1∶1∶1). About 52% plantlets rooted under ex vitro conditions were successfully acclimatized and established in pots.  相似文献   

10.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency for shoot regeneration (85%) and maximum number of shoots per explant (9.5) were obtained on the medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the original cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid (IBA) after 25 d of culture. Fifty percent of shoots were also directly rooted as microtuttings on a peat moss, soil, and compost mixture (1∶1∶1). About 52% of plantlets were successfully acclimatized and established in pots.  相似文献   

11.
A protocol for the micropropagation ofSchizandra chinensis has been developed using regenerated shoots from axillary bud explants. In preparing to do so, we found that seed type (i.e., mature vs. pre-mature) significantly influenced the rate of germination. The Woody Plant (WP) medium proved to be superior to the Murashige and Skoog (MS) medium for germination purposes. Multiple shoots were induced from cotyledonary nodes of axenic seedlings on WP media containing 6-benzylaminopurine (BA) alone or in combination with 1-napthaleneacetic acid (NAA). High frequencies of shoot proliferation and the greatest number of shoots per explant (11.6) were observed with the use of 1.0 mg L-1 BA. We also established a culture method for proliferating shoots by repeatedly subculturing the original cotyledonary nodes on a shoot multiplication medium each time newly formed shoots were harvested. To induce root formation, glucose was supplied as a carbon-source substitution for sucrose. The best rooting rate was obtained from a WP medium supplemented with 3% glucose and 0.5 mg L-1 NAA. Following transplantation in the field, 82% of the plantlets survived.  相似文献   

12.
Adventitious roots were induced from shoots and leaves of the chimera plant TCC (LI-LII-LIII = TCC; T = Tuber mustard, C = Red Cabbage), previously developed by in vitro grafting of tuber mustard (Brassica juncea) and red cabbage (B. oleracea). The regeneration frequency of adventitious roots from TCC shoots and leaf sections was markedly higher than that obtained from the parents TTT (tuber mustard) and CCC (red cabbage). Moreover, levels of α-naphthaleneacetic acid in the culture medium had lower effects on rooting efficiency of TCC chimeras compared to those of TTT and CCC. The number and fresh weight of adventitious roots per TCC shoot, 13.11 roots and 0.274 g, respectively, were also significantly higher than those of the parents. This demonstrated that replacing the histogenic LI layer (the outermost apical cell layer) with a different genotype might improve adventitious root induction capability of these vegetative tissues due to likely synergistic effects between LI and the other two histogenic layers, LII and LIII. Following polymerase chain reaction analysis and histological investigation, it was found that these adventitious roots originated from the LIII histogenic layer.  相似文献   

13.
Summary Camptothecin, produced by Camptotheca acuminata, is a pharmaceutically important compound. Transgenic technology has potential uses for the enhancement of camptothecin production; however, an efficient plant regeneration protocol for C. acuminata is not currently available. Factors that affected successful seedling germination were evaluated. The regeneration potential of various parts of seedlings was tested. Camptothecin production in regenerated plants was compared to its production in calluses and the original seedlings. Dark incubation and seed coat removal led to a higher germination rate and a higher survival rate after germination. The best shoot induction medium was found to be Gamborg's B5 medium+8.9 μM benzyladenine. Among the calluses induced from various parts of seedlings, leaf petiole calluses, leaf dise calluses, and cotyledon calluses regenerated shoots, but internode calluses did not. Furthermore, leaf petiole calluses and leaf dise calluses regenerated normal shoots, while cotyledon calluses regenerated hyperhydric shoots. Moreover, leaf petiole calluses had a higher shoot regeneration rate, 50% versus 9%, and a higher shoot number, 6.2±0.5 versus 2.0±0.3, than did leaf dise calluses on the best shoot induction medium. It took 4–6 wk to regenerate shoots after transfer into shoot induction media. Camptothecin concentration in the regenerated plants was significantly higher than that in the calluses and similar to that in the original seedlings. In conclusion, leaf petioles provide efficient plant regeneration of C. acuminata.  相似文献   

14.
The gene pool of Brassica oleracea was enriched via intergeneric somatic hybridization between B. oleracea (2n = 18) and Matthiola incana (2n = 14). One hundred and eighteen plants were obtained from 96 calli. Only four plants (H1, H2, H3 and H4) showed an intermediate phenotype from the parents; among these, H1 and H3 arose from the same callus. Random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphism (SRAP), and cytological analyses confirmed that H1 and H3 were hybrids. The nuclear DNA content of the regenerated plants was determined by flow cytometry. More than half of the plants contained a nuclear DNA content of 1.3 to 3.9 pg/cell, which was higher than the content of B. oleracea but lower than that of M. incana. H1 contained 4.89 ± 0.02 pg of DNA per cell, while H3 nuclear DNA content was estimated at 4.87 ± 0.06 pg/cell. Cytological study of the root-tip cells revealed that the majority of the H1 and H3 hybrid cells contained 28 chromosomes.  相似文献   

15.
16.
Plants differ in how much the response of net photosynthetic rate (P N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (gm). In A. thaliana, the optimum T of P N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and gm were also unaffected by growth T. There was no evidence of TPU limitation of P N in this species over the range of measurement conditions. In contrast, the optimum T of P N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and gm, as well as the T at which TPU limited P N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.  相似文献   

17.
A series of 65 derivatives of N-benzylsalicylamide was tested against eight potentially human pathogenic fungi by microdilution broth method modified according to M27-A standard. The majority of these compounds showed only weak in vitro antifungal activity. The most significant effect was observed against filamentous fungi Trichophyton mentagrophytes, Absidia corymbifera, and Aspergillus fumigatus while yeasts, in general, were less susceptible. N-(4'-Chlorobenzyl) salicylamides, N-(3',4'-dichlorobenzyl)-salicylamides, and partially N-benzylsalicylamides exhibited relatively high in vitro antifungal activity. The most efficient derivatives had MIC < or = 7.8 mumol/L against T. mentagrophytes. Regression analysis suggested an indirect relationship between MIC values and lipophilicity (log P).  相似文献   

18.
A microspore culture protocol for Brassica oleracea of Indonesian origin (cv. ‘Kemeh’) has been successfully established. A high number of embryos formed with high microspore density i.e. 15 × 104 cells/ml. Embryo formation was improved by using flower buds (4.5–4.6 mm in length) as explants, a temperature treatment at 30.5°C for 48 h and then transfer to 25°C continuously until embryos formed. A total of 295 embryos were obtained from 189 buds, 30% of which were abnormal (i.e. with an abnormal cotyledon or lacking hypocotyls). All normal embryos that grew and survived, 165 in total, were successfully transferred to soil and grew well in plastic bags (15 cm in diameter) containing a mixture of burned-rice husk and organic manure (1:1, v/v).  相似文献   

19.
Sesbania drummondii (Rydb.) Cory is a source for phytopharmaceuticals. It also hyperaccumulates several toxic heavy metals. Development of an efficient gene transfer method is an absolute requirement for the genetic improvement of this plant with more desirable traits due to limitations in conventional breeding methods. A simple protocol was developed for Agrobacterium-mediated stable genetic transformation of Sesbania. Agrobacterium tumefaciens strain EHA 101 containing the vector pCAMBIA 1305.1 having hptII and GUS plus genes was used for the gene transfer experiments. Evaluation of various parameters was carried out to assess the transformation frequency by GUS expression analysis. High transformation frequency was achieved by using 7-day-old precultured cotyledonary node (CN) explants. Further, the presence of acetosyringone (150 μM), infection of explants for 30–45 min and 3 days of cocultivation proved to be critical factors for greatly improving the transformation efficiency. Stable transformation of S. drummondii was achieved, and putative transgenic shoots were obtained on medium supplemented with hygromycin (25 mg l−1). GUS histochemical analysis of the putative transgenic tissues further confirmed the transformation event. Genomic Southern blot analysis was performed to verify the presence of transgenes and their stable integration. A transformation frequency of 4% was achieved for CN explants using this protocol.  相似文献   

20.
A novel finding that genomic restriction fragments of symbiotic nitrogen fixer S. meliloti hybridized with nifM gene probe of the free-living diazotroph Klebsiella pneumoniae is reported. When SmaI endonuclease was used to digest S. meliloti DNA, a unique hybridizing band was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号