首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimalarial drugs such as chloroquine are believed to act by inhibiting hemozoin formation in the food vacuole of the malaria parasite. We have developed a new assay for measuring and detecting inhibition of synthetic hemozoin (beta-hematin) formation. Aqueous pyridine (5% v/v, pH 7.5) forms a low-spin complex with hematin but not with beta-hematin. Its absorbance obeys Beer's law, making it useful for quantitating hematin concentration in hematin/beta-hematin mixtures, allowing compounds to be investigated for inhibition of beta-hematin formation. The assay is rapid (60 min incubation) and requires no centrifugation. The beta-hematin inhibition data show good agreement with alternative assay methods reported by four laboratories. The assay was adapted for high-throughput colorimetric screening, allowing visual identification of beta-hematin inhibitors. In this mode, the assay successfully detected all 18 beta-hematin inhibitors in a set of 47 compounds tested, with no false positive results. The quantitative in vitro antimalarial activities of a set of 13 aminoquinolines and quinoline methanols were found to correlate significantly with beta-hematin inhibition values determined using the assay.  相似文献   

2.
Intraerythrocytic plasmodia form hemozoin as a detoxification product of hemoglobin-derived heme. An identical substance, beta-hematin (BH), can be obtained in vitro from hematin at acidic pH. Quinoline-antimalarials inhibit BH formation. Standardization of test conditions is essential for studying the interaction of compounds with this process and screening potential inhibitors. A spectrophotometric microassay of heme polymerization inhibitory activity (HPIA) (Basilico et al., Journal of Antimicrobial Chemotherapy 42, 55-60, 1998) previously reported was used to investigate the effect of pH and salt concentration on BH formation. The yield of BH formation decreased with pH. Moreover, under conditions used in the above HPIA assay (18 h, 37 degrees C, pH = 2.7), several salts including chloride and phosphate inhibited the process. Aminoquinoline drugs formulated as salts (chloroquine-phosphate, primaquine-diphosphate), but not chloroquine-base, also inhibited the reaction. Interference by salts was highest at low pH and decreased at higher pH (pH 4). Here, we describe different assay conditions that eliminate these problems (BHIA, beta-hematin inhibitory activity). By replacing hematin with hemin as the porphyrin and NaOH solution with DMSO as solvent, the formation of BH was independent of pH up to pH 5.1. No interference by salts was observed over the pH range 2.7-5.1. Dose-dependent inhibition of BH formation was obtained with chloroquine-base, chloroquine-phosphate, and chloroquine-sulfate at pH 5.1. Primaquine was not inhibitory. The final product, characterized by solubility in DMSO, consists of pure BH by FT-IR spectroscopy. The BHIA assay (hemin in DMSO, acetate buffer pH 5 +/- 0.1, 18 h at 37 degrees C) is designed to screen for those molecules forming pi-pi interactions with hematin and thus inhibiting beta-hematin formation.  相似文献   

3.
The state of ferriprotoporphyrin IX in malaria pigment   总被引:5,自引:0,他引:5  
To evaluate the state of ferriprotoporphyrin IX (FP) in malaria pigment, mouse erythrocytes infected with Plasmodium berghei NYU-2 parasites were lysed by hypotonic shock, and hemoglobin and other soluble material were removed by extensive washing. The amount of FP recovered in the insoluble pellet was 2.1 mumol/ml of packed infected erythrocytes, of which approximately 1% was attributable to hemoglobin contamination. This crude preparation then was digested with a nonspecific protease from Streptomyces griseus and extracted with chloroform/methanol. The residue of insoluble dark brown material had the spectral and solubility properties characteristic of the FP of malaria pigment, and various different preparations contained from 82 to 99% of FP by weight. By elemental analysis, highly purified preparations contained no chlorine and had an oxygen content consistent with 1 mol of hydroxyl/mol of FP (oxygen content: calculated, 12.6%; found, 12.5%). In comparison to hematin purchased from Sigma, which had a measured oxygen content of 14.7%, the low oxygen form of hematin purified from malaria pigment was remarkably less soluble in ethanol, 3% sodium bicarbonate, and chloroform.  相似文献   

4.
Malaria parasite homogenate, the lipid extracts, and an unsaturated fatty acid, linoleic acid, which have been shown to promote beta-hematin formation in vitro, were used to investigate the mechanism of hemozoin biosynthesis, a distinct metabolic function of the malaria parasite. In vitro beta-hematin formation promoted by Plasmodium yoelii homogenate, the lipid extracts, and linoleic acid were blocked by ascorbic acid, reduced glutathione, sodium dithionite, beta-mercaptoethanol, dithiothreitol, and superoxide dismutase. Oxidized glutathione did not show any effect. Preoxidized preparations of the lipids extracts or the P. yoelii homogenate failed to catalyze beta-hematin formation. Depletion of oxygen in the reaction mixtures also inhibited the lipid-catalyzed beta-hematin formation. Under the reaction conditions similar to those used for the in vitro beta-hematin formation assay, the antioxidants and reducing agents mentioned above, except the DTT and beta-mercaptoethanol, did not cause degradation of heme. beta-Hematin formation was also inhibited by p-aminophenol, a free radical chain reaction breaker. Hemozoin biosynthesis within the digestive vacuoles of the malaria parasite may be a lipid-catalyzed physiochemical reaction. An oxidative mechanism may be proposed for lipid-mediated beta-hematin formation, which may be mediated by generation of some free radical intermediates of heme.  相似文献   

5.
Formation of hemozoin in the malaria parasite, due to its unique nature, is an attractive molecular target. Several laboratories have been trying to unravel the molecular mechanism of hemozoin biosynthesis within the parasite digestive vacuoles. Use of different assay protocols for in vitro beta-hematin (synthetic identical to hemozoin) formation by these laboratories has led to inconsistent and often contradictory findings. Much of the difficulty may be attributed to oligomeric heme aggregates, which may be indistinguishable in some detection approaches if adequate separation of beta-hemtin is not achieved. Therefore, there is an urgent need for a widely accepted protocol for in vitro beta-hematin formation. We describe here a spectrophotometric assay for in vitro beta-hematin formation. The assay has been validated with the Plasmodium falciparum lysate, the parasite lipid extracts, and some commercially available fatty acids, which are known to initiate/catalyze beta-hematin formation in vitro. The necessity for multiple wash steps for accurate quantification of de novo hemozoin/beta-hematin formation was verified experimentally. It was necessary to wash the pellet, which contains beta-hematin and heme aggregates, sequentially with Tris/SDS buffer and alkaline bicarbonate solution for complete removal of monomeric heme and heme aggregates and accurate quantification of beta-hematin formed during the assay. The pellets and side products in the supernatant were characterized by infrared spectroscopy. No beta-hematin formation occurred in the absence of a catalytic/initiating factor. Based on these findings, a filtration-based assay that uses 96-well microplates, and which has important application in in vitro screening and identification of novel inhibitors of hemozoin formation as potential blood schizontocidal antimalarials, has been developed.  相似文献   

6.
Digestion of hemoglobin in the food vacuole of the malaria parasite produces very high quantities of redox active toxic free heme. Hemozoin (beta-hematin) formation is a unique process adopted by Plasmodium sp. to detoxify free heme. Hemozoin formation is a validated target for most of the well-known existing antimalarial drugs and considered to be a suitable target to develop new antimalarials. Here we discuss the possible mechanisms of free heme detoxification in the malaria parasite and the mechanistic details of compounds, which offer antimalarial activity by inhibiting hemozoin formation. The chemical nature of new antimalarial compounds showing antimalarial activity through the inhibition of hemozoin formation has also been incorporated, which may help to design future antimalarials with therapeutic potential against multi-drug resistant malaria.  相似文献   

7.
Quinoline antimalarial drugs such as chloroquine and related compounds are believed to act by targeting ferriprotoporphyrin IX (Fe(III)PPIX) in the form of hematin (H(2)O/HO-Fe(III)PPIX), its mu-oxo dimer ([Fe(III)PPIX](2)O) or crystalline beta-hematin ([Fe(III)PPIX](2)) in the malaria parasite. Fe(III)PPIX is formed when the parasite digests host hemoglobin during its intraerythrocytic blood stage. This has led to a number of studies on the interaction of Fe(III)PPIX with quinoline antimalarials and related compounds. This article reviews the spectroscopy, thermodynamics and structures of Fe(III)PPIX-quinoline complexes in solution.  相似文献   

8.
The strength of inhibition of beta-hematin (synthetic hemozoin or malaria pigment) formation by the quinoline antimalarial drugs chloroquine, amodiaquine, quinidine and quinine has been investigated as a function of incubation time. In the assay used, beta-hematin formation was brought about using 4.5M acetate, pH 4.5 at 60 degrees C. Unreacted hematin was detected by formation of a spectroscopically distinct low spin pyridine complex. Although, these drugs inhibit beta-hematin formation when relatively short incubation times are used, it was found that beta-hematin eventually forms with longer incubation periods (<8h for chloroquine and >8h for quinine). This conclusion was supported by both infrared and X-ray powder diffraction observations. It was further found that the IC(50) for inhibition of beta-hematin formation increases markedly with increasing incubation times in the case of the 4-aminoquinolines chloroquine and amodiaquine. By contrast, in the presence of the quinoline methanols quinine and quinidine the IC(50) values increase much more slowly. This results in a partial reversal of the order of inhibition strengths at longer incubation times. Scanning electron microscopy indicates that beta-hematin crystals formed in the presence of chloroquine are more uniform in both size and shape than those formed in the absence of the drug, with the external morphology of these crystallites being markedly altered. The findings suggest that these drugs act by decreasing the rate of hemozoin formation, rather than irreversibly blocking its formation. This model can also explain the observation of a sigmoidal dependence of beta-hematin inhibition on drug concentration.  相似文献   

9.
In recent years, the field of Raman spectroscopy has witnessed a surge in technological development, with the incorporation of ultrasensitive, charge-coupled devices, improved laser sources and precision Rayleigh-filter systems. This has led to the development of sensitive confocal micro-Raman spectrometers and imaging spectrometers that are capable of obtaining high spatial-resolution spectra and images of subcellular components within single living cells. This review reports on the application of resonance micro-Raman spectroscopy to the study of malaria pigment (hemozoin), a by-product of hemoglobin catabolization by the malaria parasite, which is an important target site for antimalarial drugs. The review aims to briefly describe recent studies on the application of this technology, elucidate molecular and electronic properties of the malaria pigment and its synthetic analog beta-hematin, provide insight into the mechanism of hemozoin formation within the food vacuole of the parasite, and comment on developing strategies for using this technology in drug-screening protocols.  相似文献   

10.
Formation of beta-hematin in vitro could be catalyzed in the presence of various preparations related to the malaria parasite viz., the cell free homogenate of Plasmodium yoelii, lipid extract of the parasite homogenate, purified malarial hemozoin and synthetic beta-hematin. Plasma from mice infected with P. yoelii also catalyzed in vitro beta-hematin formation with highly significant efficiency. The plasma based beta-hematin formation assay was highly sensitive, as the background absorbance was almost negligible due to absence of any preformed hemozoin. The plasma beta-hematin synthesizing activity was recovered in the lipid extract. The quinoline and endoperoxide antimalarials act by inhibiting hemozoin biosynthesis in the malaria parasite. Therefore, the in vitro beta-hematin formation assay is useful for the screening and identification of blood schizontocidal antimalarials acting through interruption of heme detoxification in the parasite. Quinoline and endoperoxide antimalarials showed about three fold greater inhibition of beta-hematin synthesizing activity in the plasma-based assays as compared to that of P. yoelii homogenate-based assays. The specificity of the inhibition was similar in both preparations. The plasma-based assay therefore provides a better alternative than the parasite homogenate-based assay for in vitro screening and identification of novel inhibitors of hemozoin biosynthesis as potential blood schizontocidal antimalarials.  相似文献   

11.
Formation of beta-hematin in acidic acetate solution has been investigated using quantitative infrared spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. The process occurs via rapid precipitation of amorphous (or possibly nanocrystalline) hematin, followed by slow conversion to crystalline beta-hematin. Definitive evidence that the reaction occurs during incubation in acetate medium, rather than during the drying stage, is provided by X-ray diffraction and infrared spectroscopy of the wet material. The reaction follows a sigmoidal function indicative of a process of nucleation and growth and was modeled using the Avrami equation. Reaction rates and the dimensionality of growth (as indicated by the value of the Avrami constant) are strongly influenced by stirring rate. The reaction follows Arrhenius behavior, and there is a strong dependence of both the rate constant and the Avrami constant on acetate concentration. Acetate may act as a phase transfer catalyst, solubilizing hematin and facilitating its redeposition as beta-hematin. The pH dependence of the process indicates that only the monoprotonated species of hematin is active in forming beta-hematin. The formation of beta-hematin closely parallels many mineralization processes, and this suggests that hemozoin formation may be a unique biomineralization process. Inferences are drawn with respect to the formation of hemozoin in vivo.  相似文献   

12.
Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries against knowpains for developing broadly effective compounds active against multiple human malaria parasites.  相似文献   

13.
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.  相似文献   

14.
Studies of malaria proteases have focused on two general groups, corresponding to activities specific to malaria parasites: (1) proteases involved in hemoglobin degradation which are active in the food vacuole and which exhibit optimal activity at low pH; and (2) proteases specific to schizonts and/or merozoites which are involved in merozoite maturation and red blood cell invasion and which exhibit optimal activity at neutral pH. In this paper, Catherine Braun Breton and Luis H. Pereira da Silva will focus on those activities necessary for the release of infectious merozoites and the entry of the parasite into its host cell.  相似文献   

15.
During the intraerythrocytic stage of its lifecycle, the malaria parasite digests host erythrocyte hemoglobin, producing free ferriprotoporhyrin IX (FP). Crystallization of FP into hemozoin is essential for its detoxification and is the target of quinoline antimalarials. To gain further insight into the mechanism of hemozoin formation and quinoline action we have studied the behavior of FP and related derivatives in 40% methanol in water at different concentrations across a broad pH range (2–12). The complex behavior of FP can be modeled by incorporating a pH-dependent dimerization constant that reflects the influence of the ionization state of the propionate groups on the level of self-association. The analysis reveals that aqua-ligated FP has a low propensity to self-associate and that the predominant self-associated species are homodimeric hydroxide-ligated FP and heterodimeric aqua/hydroxide-ligated FP. The latter is predicted to be the main self-associated species at the pH of the parasite digestive vacuole. The state of FP also affects its interaction with chloroquine, with maximum affinity under neutral conditions and a more than 1,000-fold decrease in affinity under acidic (pH 2) and basic (pH 12) conditions. First-derivative absorption spectra of the chloroquine–FP complex indicate that the high-affinity interaction requires the chloroquine ring in its neutral aminoquinoline form and this in turn requires at least one of the FP species in the complex to be aqua-ligated.  相似文献   

16.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.  相似文献   

17.
The malaria parasite, Plasmodium falciparum, enhances the rate and extent of sickling of infected hemoglobin S heterozygous human erythrocytes. Upon sickling of the host cell, the parasite is killed. Parasite-free lysates of highly infected cells were analyzed to determine the mechanism by which sickling is enhanced. The intraerythrocytic pH of the infected cell was estimated to be 0.4 units below that of the uninfected cell, a difference which could result in a 20-fold increase in the extent of sickling under physiological conditions. Sickle-cell hemoglobin (HbS) heterozygous (AS) erythrocytes had decreased intracellular potassium after 24 hr of culture under conditions which cause sickling and parasite death. When infected AS cells were cultured in high-potassium medium under these conditions the parasites were protected. The medium did not prevent sickling but did maintain normal intracellular potassium levels. It is suggested that sequestration of trophozoite-infected AS cells in the venules leads to the sickling of the host cell, loss of erythrocytic potassium, and parasite death. The resulting attenuation of parasite multiplication would favor the survival of the HbS heterozygote and maintain the HbS gene at high frequencies in areas endemic for falciparum malaria.  相似文献   

18.
Trophozoites of the malaria parasite Plasmodium falciparum hydrolyze erythrocyte hemoglobin in an acidic food vacuole to provide amino acids for parasite protein synthesis. Cysteine protease inhibitors block hemoglobin degradation, indicating that a cysteine protease plays a key role in this process. A principal trophozoite cysteine protease was purified by affinity chromatography. Sequence analysis indicated that the protease is encoded by a previously unidentified gene, falcipain-2. Falcipain-2 was predominantly expressed in trophozoites, was concentrated in food vacuoles, and was responsible for at least 93% of trophozoite soluble cysteine protease activity. A construct encoding mature falcipain-2 and a small portion of the prodomain was expressed in Escherichia coli and refolded to active enzyme. Specificity for the hydrolysis of peptide substrates by native and recombinant falcipain-2 was very similar, and optimal at acid pH in a reducing environment. Under physiological conditions (pH 5.5, 1 mm glutathione), falcipain-2 hydrolyzed both native hemoglobin and denatured globin. Our results suggest that falcipain-2 can initiate cleavage of native hemoglobin in the P. falciparum food vacuole, that, following initial cleavages, the protease plays a key role in rapidly hydrolyzing globin fragments, and that a drug discovery effort targeted at this protease is appropriate.  相似文献   

19.
The malaria parasite Plasmodium falciparum degrades hemoglobin in its acidic food vacuole for use as a major nutrient source. A novel metallopeptidase activity, falcilysin, was purified from food vacuoles and characterized. Falcilysin appears to function downstream of the aspartic proteases plasmepsins I and II and the cysteine protease falcipain in the hemoglobin proteolytic pathway. It is unable to cleave hemoglobin or denatured globin but readily destroys peptide fragments of hemoglobin. Falcilysin cleavage sites along the alpha and beta chains of hemoglobin are polar in character, with charged residues located in the P1 and/or P4' positions. In contrast, plasmepsins I and II and falcipain prefer hydrophobic residues around the scissile bond. The gene encoding falcilysin has been cloned. Its coding sequence exhibits features characteristic of clan ME family M16 metallopeptidases, including an "inverted" HXXEH active site motif. Falcilysin shares primary structural features with M16 family members such as insulysin, mitochondrial processing peptidase, nardilysin, and pitrilysin as well as with data base hypothetical proteins that are potential M16 family members. The characterization of falcilysin increases our understanding of hemoglobin catabolism in P. falciparum and the unusual M16 family of metallopeptidases.  相似文献   

20.
Bovine serum albumin and preparations of cell sap from malaria parasites and normal erythrocytes were tested for ability to protect cellular membranes against the toxicity of ferriprotoporphyrin IX (FP) and a chloroquine-FP complex. Suspensions of Plasmodium berghei (approximately 7 × 106 parasites per ml, isolated from saponin-lysed, infected erythrocytes) were used as a test system. Toxicity was monitored by measuring changes in turbidity of these suspensions at 700 nm. Parasite cell sap (0.56 mg protein per ml) and albumin (1 mg per ml) completely prevented the toxicity of 40 μM FP. Erythrocyte cell sap (8.6 mg of hemoglobin per ml) provided only partial protection from 40 μM FP. Neither the cell sap preparations nor albumin eliminated the toxicity of a chloroquine-FP complex formed from 20 μM chloroquine and 40 μM FP. These observations suggest that the cell sap preparations contain FP binding substances and that the mode of action of chloroquine may be to shunt FP away from a nontoxic complex with these substances and into a toxic chloroquine-FP complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号