首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
Intestinal epithelial cells are the initial sites of host response to Clostridium difficile infection and can play a role in signaling the influx of inflammatory cells. To further explore this role, the regulated expression and polarized secretion of CXC and CC chemokines by human intestinal epithelial cells were investigated. An expression of the CXC chemokines, including IL-8 and growth-related oncogene (GRO)-alpha, and the CC chemokine monocyte chemoattractant protein (MCP)-1 from HT-29 cells increased in the 1-6 hr following C. difficile toxin A stimulation, assessed by quantitative RT-PCR. In contrast, the expression of neutrophil activating protein-78 (ENA-78) was delayed for 18 hr. The up-regulated mRNA expression of chemokines was paralleled by the increase of protein levels. However, the expression of macrophage inflammatory protein (MIP)-1alpha, RANTES (regulated on activation normal T cells expressed and secreted), and interferon-gamma-inducible protein-10 (IP-10) was not changed in HT-29 or Caco-2 cells stimulated with toxin A. Upon stimulation of the polarized Caco-2 epithelial cells in a transwell chamber with toxin A, CXC and CC chemokines were released predominantly into the basolateral compartment. Moreover, the addition of IFN-gamma and TNF-alpha to toxin A stimulated Caco-2 cells increased the basolateral release of CC chemokine MCP-1. In contrast, IFN-gamma and TNF-alpha had no effect on the expression of the CXC chemokines IL-8 and GRO-alpha. These results suggest that a CXC and CC chemokine expression from epithelial cells infected with C. difficile may be an important factor in the mucosal inflammatory response.  相似文献   

3.
4.
The expression of N-myc downstream-regulated gene 1 (NDRG1) was significantly correlated with tumor angiogenesis and malignant progression together with poor prognosis in gastric cancer. However, the underlying mechanism for the role of NDRG1 in the malignant progression of gastric cancer remains unknown. Here we examined whether and how NDRG1 could modulate tumor angiogenesis by human gastric cancer cells. We established NU/Cap12 and NU/Cap32 cells overexpressing NDRG1 in NUGC-3 cells, which show lower tumor angiogenesis in vivo. Compared with parental NU/Mock3, NU/Cap12, and NU/Cap32 cells: 1) induced higher tumor angiogenesis than NU/Mock3 cells accompanied by infiltration of tumor-associated macrophages in mouse dorsal air sac assay and Matrigel plug assay; 2) showed much higher expression of CXC chemokines, MMP-1, and the potent angiogenic factor VEGF-A; 3) increased the expression of the representative inflammatory cytokine, IL-1α; 4) augmented JNK phosphorylation and nuclear expression of activator protein 1 (AP-1). Further analysis demonstrated that knockdown of AP-1 (Jun and/or Fos) resulted in down-regulation of the expression of VEGF-A, CXC chemokines, and MMP-1, and also suppressed expression of IL-1α in NDRG1-overexpressing cell lines. Treatment with IL-1 receptor antagonist (IL-1ra) resulted in down-regulation of JNK and c-Jun phosphorylation, and the expression of VEGF-A, CXC chemokines, and MMP-1 in NU/Cap12 and NU/Cap32 cells. Finally, administration of IL-1ra suppressed both tumor angiogenesis and infiltration of macrophages by NU/Cap12 in vivo. Together, activation of JNK/AP-1 thus seems to promote tumor angiogenesis in relationship to NDRG1-induced inflammatory stimuli by gastric cancer cells.  相似文献   

5.
6.
7.
8.
9.
Interleukin-8 (IL-8) is released in response to inflammatory stimuli, such as bacterial products. Either porins or lipopolysaccharide (LPS) stimulated THP-1 cells to release IL-8 after 24 h. We have previously reported that stimulation of monocytic cells with Salmonella enterica serovar Typhimurium porins led to the activation of mitogen-activated protein kinase cascades and of protein tyrosine kinases (PTKs). In this report, we demonstrate, using two potent and selective inhibitors of MEK activation by Raf-1 (PD-098059) and p38 (SB-203580), that both ERK1/2 and p38 pathways play a key role in the production of IL-8 by porins and LPS. Porin-stimulated expression of activating protein 1 (AP-1) and correlated IL-8 release is also inhibited by PD-098059 or SB-203580 indicating that the Raf-1/MEK1-MEK2/MAPK cascade is required for their activation. Also PTKs modulate the pathway that control IL-8 gene expression, in fact its expression is abolished by tyrphostin. By using N-acetyl-leucinyl-leucinyl-norleucinal-H (ALLN) an inhibitor of nuclear factor-kappaB (NF-kappaB) activity, we also observed IL-8 release modulation. Our results elucidate some of the molecular mechanisms by which AP-1 and NF-kappaB regulate IL-8 release and open new strategies for the design of specific molecules that will modulate IL-8 effects in various infectious diseases.  相似文献   

10.
Epithelial neutrophil-activating peptide-78 (ENA-78) is a member of CXC chemokines. It is produced by endothelial cells stimulated with interleukin-1 (IL-1), along with other CXC chemokines such as IL-8 and growth-related oncogene protein-alpha (GRO-alpha). IL-1-induced ENA-78 production by endothelial cells may be important for the regulation of neutrophil activation. 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a natural ligand for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and affects the expression of various genes. We examined the effect of 15d-PGJ(2) on the expression of ENA-78 in cultured endothelial cells stimulated with IL-1beta. 15d-PGJ(2) inhibited the IL-1beta-induced expression of ENA-78, but not the expression of IL-8 or GRO-alpha in response to IL-1. Ciglitazone, another agonist for PPAR-gamma, had no effect on the expression of ENA-78, suggesting that 15d-PGJ(2) may inhibit the expression of ENA-78 in a PPAR-gamma-independent manner. 15d-PGJ(2) may modulate inflammatory reactions by regulating the balance of CXC chemokines in endothelial cells.  相似文献   

11.
12.
The human lymphotoxin beta receptor (LTbetaR), a member of the tumor necrosis factor (TNF) receptor superfamily, is essential for not only the development and organization of secondary lymphoid tissues, but also for chemokine release. Even though LTbetaR was shown to recruit TNF-receptor-associated factor (TRAF) 2, 3, and 5, and to induce cell apoptosis or NF-kappaB activation, however, the downstream signaling leading to chemokine expression is not illustrated yet. In this study, we find that overexpression of LTbetaR in HEK293 cells increases IL-8 promoter activity and leads to IL-8 release. LTbetaR-induced IL-8 gene expression requires NF-kappaB (-80 to -71) and AP-1 (-126 to -12) binding sites located in IL-8 promoter, and NF-kappaB is more crucial than AP-1 for IL-8 gene expression. Reporter assay with dominant-negative mutants of TRAFs reveals that TRAF2, 3, and 5, as well as the downstream signal molecules NIK, IKKalpha, and IKKbeta, are involved in IL-8 gene expression. LTbetaR-mediated IL-8 response was inhibited by the dominant-negative mutants of ASK1, MKK4, MKK7, and JNK, but not by those of MEKK1, TAK1, MEK, ERK, and p38 MAPK. This suggests that IL-8 induction by LTbetaR is via TRAFs-elicited signaling pathways, including NIK/IKK-dependent NF-kappaB activation and ASK/MKK/JNK-dependent AP-1 activation.  相似文献   

13.
14.
15.
CXC chemokines bearing the glutamic acid-leucine-arginine (ELR) motif are crucial mediators in neutrophil-dependent acute inflammation. Interestingly, however, Interleukin (IL)-8/CXC ligand (CXCL) 8 is expressed in human milk in biologically significant concentrations, and may play a local maturational role in the developing human intestine. In this chemokine subfamily, there are six other known peptides beside IL-8/CXCL8, all sharing similar effects on neutrophil chemotaxis and angiogenesis. In this study, we measured the concentrations of these chemokines in human milk, sought their presence in human mammary tissue by immunohistochemistry, and confirmed chemokine expression in cultured human mammary epithelial cells (HMECs). Each of the seven ELR(+) CXC chemokines was measurable in milk, and except for NAP-2/CXCL7, these concentrations were higher than serum. The concentrations were higher in colostrum (except for GRO-beta/CXCL2 and NAP-2/CXCL7), and correlated negatively with time elapsed postpartum. IL-8/CXCL8, GRO-gamma/CXCL3, and ENA-78/CXCL5 concentrations were higher in preterm milk. There was intense immunoreactivity in mammary epithelial cells for all ELR(+) CXC chemokines, and the intensity of staining was higher in breast tissue with lactational changes. The supernatants from confluent HMEC cultures also contained measurable concentrations of all the seven ELR(+) CXC chemokines. These results confirm that all ELR(+) CXC chemokines are actively secreted by the mammary epithelial cells into human milk. Further studies are needed to determine if these chemokines share with IL-8/CXCL8 the protective effects on intestinal epithelial cells.  相似文献   

16.
To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori[wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-kappaB pathways, the extracellular signal-regulated kinase (ERK)-->c-Fos/c-Jun-->activating protein (AP-1) pathways, JNK-->c-Jun-->AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-kappaB pathways and the ERK-->c-Fos-->AP-1 pathways. In contrast, activation of the JNK-->c-Jun-->AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis.  相似文献   

17.
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements.  相似文献   

18.
19.
Numerous epidemiological studies demonstrated the association between Helicobacter pylori (H. pylori) infection and gastric cancer but the mechanism of the involvement of H. pylori in gastric cancerogenesis remains virtually unknown. This study was designed to determine the seropositivity of H. pylori and cytotoxin associated gene A (CagA), serum gastrin and gastric lumen gastrin levels under basal conditions and following stimulation with histamine in gastric cancer patients and controls. 100 gastric cancer patients aging from 21 to 60 years and 300 gender- and age-adjusted controls hospitalized with non-ulcer dyspepsia (NUD) entered this study. 13C-Urea Breath Test (UBT), serum immunoglobulin (IgG) antibodies to H. pylori and CagA were used to assess the H. pylori infection and serum levels of IL-1beta, IL-8 and TNFalpha were measured by enzyme-linked immunosorbent assay (ELISA) to evaluate the degree of gastric inflammation by H. pylori . Gastrin-17 mRNA and gastrin receptors (CCK(B)) mRNA expression in gastric mucosal samples taken by biopsy from the macroscopically intact fundic and antral mucosa as well as from the gastric tumor was determined using RT-PCR. The overall H. pylori seropositivity in gastric cancer patients at age 21-60 years was about 92%, compared, respectively, to 68%, in controls. A summary odds ratio (OR) for gastric cancer in H. pylori infected patients was about 5.0 . The H. pylori CagA seropositivity in gastric cancer patients was about 58.5% compared to 32.4% in controls, giving the summary OR for gastric cancer in CagA positive patients about 8.0. The prevalence of H. pylori- and H. pylori CagA-seropositivity was significantly higher in cancers than in controls, irrespective of the histology of gastric tumor (intestinal, diffuse or mixed type). Median IL-1beta and IL-8 reached significantly higher values in gastric cancer patients (9.31 and 30.8 pg/ml) than in controls (0.21 and 3.12, respectively). In contrast, median serum gastrin in cancers (as total group) was several folds higher (62.6 pM) than in controls (19.3 pM). Also median luminal gastrin concentration in gastric cancer patients was many folds higher (310 pM) than in controls (20 pM). This study shows for the first time that cancer patients are capable of releasing large amounts of gastrin into the gastric lumen to increase luminal hormone concentration to the level that was recently reported to stimulate the growth of H. pylori. There was no any correlation between plasma gastrin levels and gastric luminal concentration of gastrin suggesting that: 1) luminal gastrin originates from different source than plasma hormone, most probably from the cancer cells, 2) cancer cells are capable of expressing gastrin and releasing it mainly into the gastric juice and 3) the gastric cancer cells are equipped with gastrin-specific (CCK(B)) receptor so they exhibit the self-growth promoting activity in autocrine fashion. This notion is supported by direct detection of gastrin mRNA and gastrin receptor (CCK(B)-receptors) mRNA using RT-PCR in cancer tissue. To our knowledge this is the first study showing an important role of gastrin as self-stimulant of cancer cells in patients infected with H. pylori. Basal and histamine maximally stimulated acid outputs were significantly lower in gastric cancer patients than in controls despite of enhanced gastrin release, particularly in cancer patients and this might reflect the mucosal inflammatory changes (increased serum levels of proinflammtory interleukins - IL-1beta and IL-8), that are known to increase gastrin release. We conclude that: 1) H. pylori infected patients, particularly those showing CagA-seropositivity, are at greatly increased risk of development of gastric cancer, 2) H. pylori-infected cancer patients produce significantly more IL-1beta and IL-8 that might reflect an H. (ABSTRACT TRUNCATED)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号