首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
2.
为了研究短双链RNA(Small interfering RNA,siRNA)对柯萨奇B组3型病毒(CVB3)复制的影响及其作用特性,合成针对CVB3基因组2B区的siRNA-2B,脂质体法转染HeLa细胞后感染CVB3病毒,观测转染效率及存留时间、毒性作用、病毒致细胞病变效应、病毒滴度、病毒RNA含量、siRNA-2B对重组基因的特异性降解及培养上清有限稀释后再感染情况.结果发现siRNA-2B能高效转染入HeLa细胞并存留长达48h,高剂量的siRNA-2B对培养细胞无明显毒性,siRNA-2B能特异性针对2B区有效地降解病毒RNA,能明显抑制病毒RNA的复制.随着转染浓度的增加,siRNA-2B的抗病毒作用逐渐增强.siRNA-2B还能明显降低CVB3的再感染能力.这些结果提示,针对基因组2B区的siRNA-2B可以明显抑制CVB3基因复制,有效控制病毒再感染,并具有高效性、特异性和量效关系等特点.为siRNA可能成为预防和治疗CVB3感染的新途径奠定基础.  相似文献   

3.
目的:通过在小鼠病毒性心肌炎动物模型研究短双链小干扰RNA(small interfering RNA,siRNA)对病毒感染和复制的抑制作用,研究RNAi在治疗病毒性疾病的可行性.方法:利用质粒载体将siRNA转染至HeLa细胞和Balb-c小鼠后感染病毒,荧光显微镜现察GFP表达量观察细胞内质粒转染效率和持续时间,通过病毒致细胞病变作用(CPE)保护实验病毒空斑形成实验检测病毒受抑制程度,动物模型中观察动物死亡率和易感组织病理变化评价siRNA的保护作用.结果:在HeLa细胞中针对CVB3 2B区的siRNA能显著抑制柯萨奇病毒B3的感染和复制,抑制率可达90%.动物模型中sigNA质粒可改善动物存活率(30%),并降低易感脏器中病毒含量,减轻病理反应.结论:针对CVB3基因组2B区的siRNA在病毒性心肌炎动物模型中具有保护作用.  相似文献   

4.
SiRNA抑制柯萨奇B3病毒的复制和表达   总被引:1,自引:0,他引:1  
目的 研究观察体外合成siRNA对培养HELA细胞中柯萨奇B3病毒(Coxsackievirus B3,CVB3)的影响。方法根据siRNA靶序列设计原则,针对编码CVB3病毒聚合酶、VP1蛋白和5’非编码区基因组,特异性地体外合成三对siRNA,同时合成一对与CVB基因组序列无关的阴性对照siRNA。利用脂质体转染进入Hela细胞,用CVB3感染培养HELA细胞,观察转染后HELA细胞病变;采用RT-PCR技术检测感染CVB3各组的病毒RNA;用免疫荧光技术检测各组CVB3蛋白的表达;并用培养细胞上清液再感染HELA细胞观察病毒滴度。结果针对CVB3病毒聚合酶的siR-NA能有效的抑制病毒的复制和CVB3蛋白的表达,并能抑制病毒的再感染;而针对VP1蛋白和5’非编码区的siRNA能部分抑制病毒的复制和CVB3蛋白的表达。结论我们设计合成针对编码CVB3病毒聚合酶基因组的siRNA能有效抑制CVB3病毒复制和表达。  相似文献   

5.
构建小鼠Smad6基因RNA干扰(RNAi)慢病毒载体,有效沉默骨髓树突状细胞(BMDC)的Smad6基因表达,为构建骨髓致耐受DC用于哮喘等自身免疫疾病的研究。设计小鼠Smad6 shRNA序列,合成、退火,得到双链DNA,与经酶切后的Psih1-H1-copGFP shRNA Vector载体连接产生LV-shSmad6慢病毒载体,并测序鉴定。转染293TN细胞,包装产生慢病毒,测定滴度。感染小鼠骨髓树突细胞,检测Smad6基因的表达状况成功构建Smad6 shRNA的慢病毒载体LV-shSmad6。包装慢病毒,并显著抑制Smad6 mRNA水平及蛋白水平的表达。成功构建出小鼠Smad6基因shR-NA慢病毒载体,为后期研究Smad6基因在哮喘发病机制及新治疗方法提供了稳定的转染细胞载体。  相似文献   

6.
旨在构建泛素结合酶USE1基因的RNA干扰慢病毒载体,并在细胞中检测该基因的抑制表达水平,以期寻找Uba6-USE1特异性泛素化通路对应的下游底物并研究其功能。选取并合成靶向USE1基因的特异性shRNA序列,将其克隆至pLL3.7慢病毒抑制表达载体上,构建抑制USE1基因表达的重组慢病毒质粒并鉴定。将鉴定成功的重组质粒与psPAX2、VSVG慢病毒包装载体共转染至HEK-293细胞,收集病毒上清,测定病毒滴度并确定最佳感染稀释倍数,通过qPCR和Western Blot方法检测病毒感染HEK-293细胞后对USE1基因的抑制程度,获得能有效抑制USE1基因的慢病毒上清。结果显示,成功构建3种靶向USE1基因的RNA干扰慢病毒载体,获得滴度符合要求的3种慢病毒包装上清液,感染HEK-293细胞后发现,第2、3号shRNA序列均有明显抑制表达USE1基因效果,基因表达抑制率约50%(*P0.05)。利用RNA干扰技术成功构建了特异性抑制泛素结合酶USE1基因表达的慢病毒载体,并经mRNA和蛋白水平检验得到2种能够显著抑制USE1表达的慢病毒上清及其shRNA序列。  相似文献   

7.
【背景】MiR-107异常表达可引起肿瘤细胞中Wnt/β-catenin信号通路主要蛋白表达发生改变,但其能否在柯萨奇病毒B3(coxsackievirus B3,CVB3)感染的人宫颈癌细胞(HeLa cells)中发挥同样作用却未见报道。【目的】探讨miR-107能否影响CVB3感染HeLa细胞中的糖原合成酶激酶-3β(GSK-3β)蛋白、P-GSK-3β蛋白和β连环蛋白(β-catenin)的表达水平。【方法】体外培养HeLa细胞,感染CVB3不同时间,通过显微镜观察HeLa细胞的形态学变化、实时荧光定量PCR实验检测HeLa细胞中miR-107表达量、免疫印迹实验检测HeLa细胞中的GSK-3β、P-GSK-3β、β-catenin蛋白及病毒衣壳蛋白(VP1)的表达水平。【结果】CVB3感染HeLa细胞6 h后,细胞病变效应明显,miR-107表达量及GSK-3β、P-GSK-3β和VP1蛋白的表达水平随CVB3感染时间(0—8 h)的延长逐渐增加,而β-catenin蛋白的表达水平逐渐减少。过表达miR-107的CVB3感染6 h的HeLa细胞死亡细胞增多,GSK-3β、P-GSK-3β和VP1蛋白表达水平增加(P<0.05),β-catenin蛋白表达水平减少(P<0.001);抑制miR-107的CVB3感染6 h的HeLa细胞GSK-3β、P-GSK-3β及VP1蛋白表达水平明显减少(P<0.05),β-catenin蛋白表达水平明显增加(P<0.05)。【结论】MiR-107异常表达可影响CVB3感染HeLa细胞中Wnt/β-catenin信号通路蛋白和病毒衣壳蛋白的表达水平。  相似文献   

8.
本研究探索柯萨奇病毒B3(Coxsackievirus B3,CVB3)感染引起的自噬与病毒复制之间的关系。CVB3感染HeLa细胞,并在病毒感染后6 h、8 h和10 h时检测LC3-Ⅰ蛋白、LC3-Ⅱ蛋白和p62蛋白的表达水平。结果显示CVB3病毒感染促使LC3-Ⅱ/LC3-Ⅰ比值升高,同时降低p62蛋白的表达。分别将自噬诱导剂雷帕霉素(Rapamy-cin)、自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3MA)或溶酶体抑制剂阿洛司他丁(Aloxistatin,E46D)预处理HeLa细胞2 h,CVB3感染药物处理细胞并在病毒感染6 h后收集细胞、检测CVB3病毒VP1蛋白的表达。结果显示雷帕霉素和E64D促使CVB3病毒VP1蛋白表达增加,而3MA降低CVB3病毒VP1蛋白的表达。本研究得出结论 CVB3病毒感染诱导自噬进而促进病毒复制。  相似文献   

9.
目的:构建靶向LRPl6基因的短发夹RNA(shRNA)慢病毒表达载体,鉴定其在HeLa细胞中对LRP16的抑制效果。方法:构建pWPT-U6-LRPl6shRNA-CMV-GFP慢病毒载体,通过病毒感染、细胞筛选、Western印迹等步骤,获得LRP16基因稳定抑制的细胞株。结果:构建了具有LRP16干扰效果的慢病毒载体,感染HeLa细胞后获得了稳定沉默LRP16及对照的细胞株;经克隆筛选,在荧光显微镜下观察到近似100%感染细胞发出绿色荧光;Western印迹证实pWPT-U6-L374-CMV-GFP和pWPT-U6-L668-CMV-GFP均可显著抑制HeLa细胞株中LRP16蛋白的表达,其中pWPT-Gsi-L374-GFP的抑制效果更好。结论:构建了靶向人LRP16基因shRNA慢病毒载体及LRP16稳定抑制的HeLa细胞系。  相似文献   

10.
探究柯萨奇病毒B3型(Coxsackie virus type B3, CVB3)感染的细胞是否诱导内源性小干扰RNA(small interfering RNA,siRNA)的产生。以CVB3接种HeLa细胞,在细胞培养箱(5% CO2、37 ℃)孵育1 h。随后加入含2%血清的细胞维持液,继续培养3 h和6 h后收集细胞。用高通量测序(二代测序) 试剂盒提取细胞RNA,并反转录合成cDNA,构建文库,上机测序。过滤数据,去除插入片段过长的序列、低质量序列、poly A序列和小片段序列,与已知的小RNA数据库比对鉴定siRNA。通过茎-环反转录-聚合酶链反应,证实内源性siRNA在感染CVB3后的表达。结果显示,感染CVB3 3 h和6 h后,HeLa细胞产生了多种内源性siRNA。其中内源性siRNA(novel_sir3502和novel_sir2806)在感染后3 h和6 h均可持续表达。经比对,novel_sir3502和 novel_sir2806均可以识别45S和28S核糖体前体RNA。结果提示,CVB3感染可能干扰核糖体成熟。  相似文献   

11.
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.  相似文献   

12.
Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart''s ability to increase capillary density to adapt to increased load.  相似文献   

13.
The role of signaling pathways including the mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K) during viral infection has gained much recent attention. Our laboratory reported on an important regulatory role for extracellular signal-regulated kinases (ERK1/2), subfamily members of the MAPKs, during coxsackievirus B3 (CVB3) infection. However, the role of the PI3K pathway in CVB3 infection has not been well characterized. CVB3 is the most common known viral infectant of heart muscle that directly injures and kills infected cardiac myocytes during the myocarditic process. In the present study, we investigated the role of protein kinase B (PKB) (also known as Akt), a general downstream mediator of survival signals through the PI3K cascade, in regulating CVB3 replication and virus-induced apoptosis in a well-established HeLa cell model. We have demonstrated that CVB3 infection leads to phosphorylation of PKB/Akt on both Ser-473 and Thr-308 residues through a PI3K-dependent mechanism. Transfection of HeLa cells with a dominant negative mutant of Akt1 or pretreatment of wild-type HeLa cells with the specific PI3K inhibitor LY294002 significantly suppresses viral RNA expression, as reflected in diminished viral capsid protein expression and viral release. Dominant negative Akt1 and LY294002 also increase apoptosis in infected cells, which can be reversed by addition of the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk). Interestingly, blocking of apoptosis by zVAD.fmk does not reverse the viral RNA translation blockade, indicating that the inhibitory effect of dominant negative Akt1 on viral protein expression is not caspase dependent. In addition, we showed that the attachment of virus to its receptor-coreceptor complex is not sufficient for PKB/Akt activation and that postentry viral replication is required for Akt phosphorylation. Taken together, these data illustrate a new and imperative role for Akt in CVB3 infection in HeLa cells and show that the PI3K/Akt signaling is beneficial to CVB3 replication.  相似文献   

14.
Kim SM  Park JH  Chung SK  Kim JY  Hwang HY  Chung KC  Jo I  Park SI  Nam JH 《Journal of virology》2004,78(24):13479-13488
Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family, is the most common human pathogen associated with myocarditis and idiopathic dilated cardiomyopathy. We found upregulation of the cysteine-rich protein gene (cyr61) after CVB3 infection in HeLa cells with a cDNA microarray approach, which is confirmed by Northern blot analysis. It is also revealed that the extracellular amount of Cyr61 protein was increased after CVB3 infection in HeLa cells. cyr61 is an early-transcribed gene, and the Cyr61 protein is secreted into the extracellular matrix. Its function is related to cell adhesion, migration, and neuronal cell death. Here, we show that activation of the cyr61 promoter by CVB3 infection is dependent on JNK activation induced by CVB3 replication and viral protein expression in infected cells. To explore the role of Cyr61 protein in infected HeLa cells, we transiently overexpressed cyr61 and infected HeLa cells with CVB3. This increased CVB3 growth in the cells and promoted host cell death by viral infection, whereas down-expression of cyr61 with short interfering RNA reduced CVB3 growth and showed resistance to cell death by CVB3 infection. In conclusion, we have demonstrated a new role for cyr61 in HeLa cells infected with CVB3, which is associated with the cell death induced by virus infection. These data thus expand our understanding of the physiological functions of cyr61 in virus-induced cell death and provide new insights into the cellular factors involved.  相似文献   

15.
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.  相似文献   

16.
Infection of primary cultures of total splenic and thymic cells from BALB/c and C3H/HeN mice with CVB4 E2 and JVB strains has been investigated. The presence of positive-strand viral RNA within cells was determined by semi-nested RT-PCR, and viral replication was attested by detection of intracellular negative-strand viral RNA and by release of infectious particles in culture supernatants. Viral replication occurred with both CVB4 strains to an extent dependent on the genetic background of the host. No interferon-alpha production was detected in the supernatants of CVB4-infected cultures using biological titration. Together these results suggest that infection of splenic and thymic cells can play a role in virus dissemination, and therefore in the pathophysiology of CVB4 infections.  相似文献   

17.
Stress granules (SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B (CVB) infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3 (CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.  相似文献   

18.
Enteroviruses, including coxsackieviruses, exhibit significant tropism for the central nervous system, and these viruses are commonly associated with viral meningitis and encephalitis. Previously, we described the ability of coxsackievirus B3 (CVB3) to infect proliferating neuronal progenitor cells located in the neonatal subventricular zone and persist in the adult murine central nervous system (CNS). Here, we demonstrate that cultured murine neurospheres, which comprise neural stem cells and their progeny at different stages of development, were highly susceptible to CVB3 infection. Neurospheres, or neural progenitor and stem cells (NPSCs), isolated from neonatal C57BL/6 mice, supported high levels of infectious virus production and high viral protein expression levels following infection with a recombinant CVB3 expressing enhanced green fluorescent protein (eGFP) protein. Similarly, NPSCs isolated from neonatal actin-promoter-GFP transgenic mice (actin-GFP NPSCs) were highly susceptible to infection with a recombinant CVB3 expressing DsRed (Discosoma sp. red fluorescent protein). Both nestin-positive and NG2(+) progenitor cells within neurospheres were shown to preferentially express high levels of viral protein as soon as 24 h postinfection (p.i.). By day 3 p.i., viral protein expression and viral titers increased dramatically in NPSCs with resultant cytopathic effects (CPE) and eventual cell death. In contrast, reduced viral replication, lower levels of CPE, and diminished viral protein expression levels were observed in NPSCs differentiated for 5 or 16 days in the presence of fetal bovine serum (FBS). Despite the presence of CPE and high levels of cell death following early CVB3 infection, surviving neurospheres were readily observed and continued to express detectable levels of viral protein as long as 37 days after initial infection. Also, CVB3 infection of actin-GFP NPSCs increased the percentage of cells expressing neuronal class III β-tubulin following their differentiation in the presence of FBS. These results suggest that neural stem cells may be preferentially targeted by CVB3 and that neurogenic regions of the CNS may support persistent viral replication in the surviving host. In addition, normal progenitor cell differentiation may be altered in the host following infection.  相似文献   

19.
Enteroviruses can frequently target the human central nervous system to induce a variety of neurological diseases. Although enteroviruses are highly cytolytic, emerging evidence has shown that these viruses can establish persistent infections both in vivo and in vitro. Here, we investigated the susceptibility of three human brain cell lines, CCF-STTG1, T98G, and SK-N-SH, to infection with three enterovirus serotypes: coxsackievirus B3 (CVB3), enterovirus 71, and coxsackievirus A9. Persistent infection was observed in CVB3-infected CCF-STTG1 cells, as evidenced by prolonged detection of infectious virions, viral RNA, and viral antigens. Of note, infected CCF-STTG1 cells expressed the nonfunctional canonical viral receptors coxsackievirus-adenovirus receptor and decay-accelerating factor, while removal of cell surface chondroitin sulfate from CCF-STTG1 cells inhibited the replication of CVB3, suggesting that receptor usage was one of the major limiting factors in CVB3 persistence. In addition, CVB3 curtailed the induction of beta interferon in infected CCF-STTG1 cells, which likely contributed to the initiation of persistence. Furthermore, proinflammatory chemokines and cytokines, such as vascular cell adhesion molecule 1, interleukin-8 (IL-8), and IL-6, were upregulated in CVB3-infected CCF-STTG1 cells and human progenitor-derived astrocytes. Our data together demonstrate the potential of CCF-STTG1 cells to be a novel cell model for studying CVB3-central nervous system interactions, providing the basis toward a better understanding of CVB3-induced chronic neuropathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号