首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the role and mechanisms of action by which dopaminergic innervation modulates ductal secretion in bile duct-ligated rats, we determined the expression of D1, D2, and D3 dopaminergic receptors in cholangiocytes. We evaluated whether D1, D2 (quinelorane), or D3 dopaminergic receptor agonists influence basal and secretin-stimulated choleresis and lumen expansion in intrahepatic bile duct units (IBDU) and cAMP levels in cholangiocytes in the absence or presence of BAPTA-AM, chelerythrine, 1-(5-isoquinolinylsulfonyl)-2-methyl piperazine (H7), or rottlerin. We evaluated whether 1) quinelorane effects on ductal secretion were associated with increased expression of Ca(2+)-dependent PKC isoforms and 2) increased expression of PKC causes inhibition of PKA activity. Quinelorane inhibited secretin-stimulated choleresis in vivo and IBDU lumen space, cAMP levels, and PKA activity in cholangiocytes. The inhibitory effects of quinelorane on secretin-stimulated ductal secretion and PKA activity were blocked by BAPTA-AM, chelerythrine, and H7. Quinelorane effects on ductal secretion were associated with activation of the Ca(2+)-dependent PKC-gamma but not other PKC isoforms. The dopaminergic nervous system counterregulates secretin-stimulated ductal secretion in experimental cholestasis.  相似文献   

2.
Tumor necrosis factor (TNF)- plays a critical role in epithelial cell injury. However, the role of TNF- in mediating cholangiocyte injury under physiological or pathophysiological conditions is unknown. Thus we assessed the effects of TNF- alone or following sensitization by actinomycin D on cell apoptosis, proliferation, and basal and secretin-stimulated ductal secretion in cholangiocytes from normal or bile duct-ligated (BDL) rats. Cholangiocytes from normal or BDL rats were highly resistant to TNF- alone. However, presensitization by actinomycin D increased apoptosis in cholangiocytes following BDL and was associated with an inhibition of proliferation and secretin-stimulated ductal secretion. Thus TNF- mediates cholangiocyte injury and altered ductal secretion following bile duct ligation. These observations suggest that cholestasis may enhance susceptibility to cytokine-mediated cholangiocyte injury. bile flow; intrahepatic biliary epithelium; proliferation; secretin  相似文献   

3.
Secretin stimulates ductal secretion by activation of cAMP PKA CFTR Cl/HCO3 exchanger in cholangiocytes. We evaluated the expression of 2A-, 2B-, and 2C-adrenergic receptors in cholangiocytes and the effects of the selective 2-adrenergic agonist UK 14,304, on basal and secretin-stimulated ductal secretion. In normal rats, we evaluated the effect of UK 14,304 on bile and bicarbonate secretion. In bile duct-ligated (BDL) rats, we evaluated the effect of UK 14,304 on basal and secretin-stimulated 1) bile and bicarbonate secretion; 2) duct secretion in intrahepatic bile duct units (IBDU) in the absence or presence of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na+/H+ exchanger isoform NHE3; and 3) cAMP levels, PKA activity, Cl efflux, and Cl/HCO3 exchanger activity in purified cholangiocytes. 2-Adrenergic receptors were expressed by all cholangiocytes in normal and BDL liver sections. UK 14,304 did not change bile and bicarbonate secretion of normal rats. In BDL rats, UK 14,304 inhibited secretin-stimulated 1) bile and bicarbonate secretion, 2) expansion of IBDU luminal spaces, and 3) cAMP levels, PKA activity, Cl efflux, and Cl/HCO3 exchanger activity in cholangiocytes. There was decreased lumen size after removal of secretin in IBDU pretreated with UK 14,304. In IBDU pretreated with EIPA, there was no significant decrease in luminal space after removal of secretin in either the absence or presence of UK 14,304. The inhibitory effect of UK 14,304 on ductal secretion is not mediated by the apical cholangiocyte NHE3. 2-Adrenergic receptors play a role in counterregulating enhanced ductal secretion associated with cholangiocyte proliferation in chronic cholestatic liver diseases. bicarbonate secretion; chloride efflux; gastrointestinal hormones; intrahepatic biliary epithelium; protein kinase A  相似文献   

4.
Increased cholangiocyte growth is critical for the maintenance of biliary mass during liver injury by bile duct ligation (BDL). Circulating levels of testosterone decline following castration and during cholestasis. Cholangiocytes secrete sex hormones sustaining cholangiocyte growth by autocrine mechanisms. We tested the hypothesis that testosterone is an autocrine trophic factor stimulating biliary growth. The expression of androgen receptor (AR) was determined in liver sections, male cholangiocytes, and cholangiocyte cultures [normal rat intrahepatic cholangiocyte cultures (NRICC)]. Normal or BDL (immediately after surgery) rats were treated with testosterone or antitestosterone antibody or underwent surgical castration (followed by administration of testosterone) for 1 wk. We evaluated testosterone serum levels; intrahepatic bile duct mass (IBDM) in liver sections of female and male rats following the administration of testosterone; and secretin-stimulated cAMP levels and bile secretion. We evaluated the expression of 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3, the enzyme regulating testosterone synthesis) in cholangiocytes. We evaluated the effect of testosterone on the proliferation of NRICC in the absence/presence of flutamide (AR antagonist) and antitestosterone antibody and the expression of 17β-HSD3. Proliferation of NRICC was evaluated following stable knock down of 17β-HSD3. We found that cholangiocytes and NRICC expressed AR. Testosterone serum levels decreased in castrated rats (prevented by the administration of testosterone) and rats receiving antitestosterone antibody. Castration decreased IBDM and secretin-stimulated cAMP levels and ductal secretion of BDL rats. Testosterone increased 17β-HSD3 expression and proliferation in NRICC that was blocked by flutamide and antitestosterone antibody. Knock down of 17β-HSD3 blocks the proliferation of NRICC. Drug targeting of 17β-HSD3 may be important for managing cholangiopathies.  相似文献   

5.
Loss of parasympathetic innervation after vagotomy impairs cholangiocyte proliferation, which is associated with depressed cAMP levels, impaired ductal secretion, and enhanced apoptosis. Agonists that elevate cAMP levels prevent cholangiocyte apoptosis and restore cholangiocyte proliferation and ductal secretion. No information exists regarding the role of adrenergic innervation in the regulation of cholangiocyte function. In the present studies, we investigated the role of adrenergic innervation on cholangiocyte proliferative and secretory responses to bile duct ligation (BDL). Adrenergic denervation by treatment with 6-hydroxydopamine (6-OHDA) during BDL decreased cholangiocyte proliferation and secretin-stimulated ductal secretion with concomitant increased apoptosis, which was associated with depressed cholangiocyte cAMP levels. Chronic administration of forskolin (an adenylyl cyclase activator) or beta(1)- and beta(2)-adrenergic receptor agonists (clenbuterol or dobutamine) prevented the decrease in cholangiocyte cAMP levels, maintained cholangiocyte secretory and proliferative activities, and decreased cholangiocyte apoptosis resulting from adrenergic denervation. This was associated with enhanced phosphorylation of Akt. The protective effects of clenbuterol, dobutamine, and forskolin on 6-OHDA-induced changes in cholangiocyte apoptosis and proliferation were partially blocked by chronic in vivo administration of wortmannin. In conclusion, we propose that adrenergic innervation plays a role in the regulation of biliary mass and cholangiocyte functions during BDL by modulating intracellular cAMP levels.  相似文献   

6.
The hepatic artery, through the peribiliary plexus, nourishes the intrahepatic biliary tree. During obstructive cholestasis, the nutritional demands of intrahepatic bile ducts are increased as a consequence of enhanced proliferation; in fact, the peribiliary plexus (PBP) displays adaptive expansion. The effects of hepatic artery ligation (HAL) on cholangiocyte functions during cholestasis are unknown, although ischemic lesions of the biliary tree complicate the course of transplanted livers and are encountered in cholangiopathies. We evaluated the effects of HAL on cholangiocyte functions in experimental cholestasis induced by bile duct ligation (BDL). By using BDL and BDL + HAL rats or BDL + HAL rats treated with recombinant-vascular endothelial growth factor-A (r-VEGF-A) for 1 wk, we evaluated liver morphology, the degree of portal inflammation and periductular fibrosis, microcirculation, cholangiocyte apoptosis, proliferation, and secretion. Microcirculation was evaluated using a scanning electron microscopy vascular corrosion cast technique. HAL induced in BDL rats 1) the disappearance of the PBP, 2) increased apoptosis and impaired cholangiocyte proliferation and secretin-stimulated ductal secretion, and 3) decreased cholangiocyte VEGF secretion. The effects of HAL on the PBP and cholangiocyte functions were prevented by r-VEGF-A, which, by maintaining the integrity of the PBP and cholangiocyte proliferation, prevents damage of bile ducts following ischemic injury.  相似文献   

7.
We sought to develop a cholangiocyte cell culture system that has preservation of receptors, transporters, and channels involved in secretin-induced secretion. Isolated bile duct fragments, obtained by enzyme perfusion of normal rat liver, were seeded on collagen and maintained in culture up to 18 wk. Cholangiocyte purity was assessed by staining for gamma-glutamyl transpeptidase (gamma-GT) and cytokeratin-19 (CK-19). We determined gene expression for secretin receptor (SR), cystic fibrosis transmembrane conductance regulator, Cl(-)/HCO(3)(-) exchanger, secretin-stimulated cAMP synthesis, Cl(-)/HCO(3) exchanger activity, secretin-stimulated Cl(-) efflux, and apical membrane-directed secretion in polarized cells grown on tissue culture inserts. Cultured cholangiocytes were all gamma-GT and CK-19 positive. The cells expressed SR and Cl(-)/HCO(3)(-) exchanger, and secretin-stimulated cAMP synthesis, Cl(-)/HCO(3)(-) exchanger activity, and Cl(-) efflux were similar to freshly isolated cholangiocytes. Forskolin (10(-4) M) induced fluid accumulation in the apical chamber of tissue culture inserts. In conclusion, we have developed a novel cholangiocyte line that has persistent HCO(3)(-), Cl(-), and fluid transport functions. This cell system should be useful to investigators who study cholangiocyte secretion.  相似文献   

8.
Bicarbonate excretion in bile is a major function of the biliary epithelium. It is driven by the apically located Cl-/HCO3- exchanger which is functionally coupled with a cAMP-dependent Cl- channel (CFTR). A number of hormones and/or neuropeptides with different mechanisms and at different intracellular levels regulate, in concert, the processes underlying bicarbonate excretion in the biliary epithelium. Secretin induces a bicarbonate rich choleresis by stimulating the activity of the Cl-/HCO3- exchanger by cAMP and protein kinase A mediated phosphorylation of CFTR regulatory domain. Protein phosphatase 1/2A are involved in the run-down of secretory stimulus after secretin removal. Acetylcholine potentiates secretin-choleresis by inducing a Ca(++)-calcineurin mediated "sensitization" of adenyl cyclase to secretin. Bombesin and vasoactive intestinal peptide also enhance the Cl-/HCO3- exchanger activity, but the intracellular signal transduction pathway has not yet been defined. Somatostatin and gastrin inhibit basal and/or secretin-stimulated bicarbonate excretion by down-regulating the secretin receptor and decreasing cAMP intracellular levels induced by secretin.  相似文献   

9.
Cholangiopathies, such as primary biliary cirrhosis and primary sclerosis cholangitis, are characterized at the end stage by ductopenia due to increased cholangiocyte apoptosis and decreased cholangiocyte proliferation. Although cholangiocyte proliferation is associated with an increased number of intra-hepatic bile ducts and secretin-stimulated ductal secretion, ductopenia is coupled with decreased ductal mass and secretin-induced ductal secretory activity. We have shown that a single injection of actinomycin D + tumor necrosis factor-alpha (TNF-alpha ) to bile duct-ligated (BDL) rats induces cholangiocyte injury, which is characterized by loss of cholangiocyte proliferation, and secretory activity and by an increase in cholangiocyte apoptosis. We also have shown that taurocholic acid both in vivo and in vitro stimulates cholangiocyte proliferation. We hypothesize that taurocholic acid feeding protects cholangiocytes against TNF-alpha -induced apoptosis through a phosphatidylinositol-3-kinase (PI3K)-dependent pathway. Immediately after BDL, rats were fed taurocholic acid or control diet in the absence/presence of daily injections of wortmannin for 1 week. Seven days later, control-fed or taurocholic acid-fed rats were treated with a single intraperitoneal injection of actinomycin D + TNF-alpha . Twenty-four hours later we evaluated: (i) cholangiocyte apoptosis and proliferation in liver sections and (ii) basal and secretin-stimulated bile and bicarbonate secretion in bile fistula rats. Taurocholic acid feeding prevented TNF-alpha -induced increases in cholangiocyte apoptosis and decreases in growth and secretin-stimulated bile and bicarbonate secretion, changes that were blocked by PI3K inhibition. The PI3K survival pathway is important in bile acid protection against immune-mediated cholangiocyte injury in cholestatic liver diseases.  相似文献   

10.
Previous studies have shown that the dose-response relationship for secretin-stimulated cyclic AMP accumulation is different from that for secretin-stimulated enzyme secretion in the rat exocrine pancreas. Here we show that secretin concentrations of 10(-10) M and higher stimulated a rise in cyclic AMP levels, with maximum effect on cyclic AMP accumulation being achieved already with 10(-8) M-secretin. However, at this concentration of secretin, enzyme secretion rates were approximately half-maximal. Unexpectedly, at concentrations of secretin greater than 10(-8) M there was evidence suggestive of phosphatidylinositol bisphosphate hydrolysis with rapid increases in inositol trisphosphate, cytosolic free calcium and diacylglycerol content of rat pancreatic acini. Furthermore, there was a dose-response relationship among secretin concentration (in the range 10(-8) M-2 X 10(-6) M), increases in inositol trisphosphate and increases in cytosolic free calcium ([Ca2+]i). Contrary to what has been previously believed, these results clearly indicate that in rat pancreatic acini secretin not only stimulates cyclic AMP accumulation but also raises inositol trisphosphate, [Ca2+]i and diacylglycerol. Thus, two second messenger systems may play a role in the regulation of secretin-induced amylase release.  相似文献   

11.
12.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

13.
There is growing evidence that secretin, the first hormone discovered in our history, has functions in the brain other than in the gastrointestinal tract. This article reports for the first time that secretin and its receptor mRNAs are produced in distinct cell types within the epididymis. To test if secretin affects electrolyte transport in the epididymis, we measured short-circuit current (Isc) in cultured epididymal epithelia and found secretin dose-dependently stimulated Isc. Ion substitution experiments and use of pharmacological agents inferred that the stimulated Isc is a result of concurrent electrogenic chloride and bicarbonate secretion. It is further shown that secretin and pituitary adenylate cyclase-activating polypeptide (PACAP) function via totally different mechanisms: 1) PACAP works only from the apical side of the epithelium to stimulate chloride and not bicarbonate secretion, while secretin acts on the apical and basolateral sides to stimulate chloride and bicarbonate secretion. 2) the stimulation by PACAP but not secretin requires local prostaglandin synthesis. By immunocytochemical staining, secretin is localized in the principal cells of the initial segment and caput epididymidis, whereas secretin receptor is present in the principal cells of the proximal as well as the distal part of the epididymis. This pattern of distribution appears to be consistent with the idea that secretin is secreted by the proximal epididymis and acts on the proximal and distal epididymis in an autocrine and paracrine fashion. Its function is to control secretion of electrolytes and water.  相似文献   

14.
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.  相似文献   

15.
The influence of exogenous cyclic nucleotides or theophylline either on basal or stimulated volume and protein secretion is studied on the isolated perfused canine pancreas in dependence on varied extracellular calcium concentrations. Bt2cAMP or theophylline do not influence basal secretory rates of pancreatic juice but potentiate secretin-stimulated volume output. They additionally increase basal protein secretion under exclusive secretin stimulation and potentiate dose-dependently CCK- or acetylcholine-induced protein output. The hydrokinetic and ecbolic effects of Bt2cAMP and theophylline persist in a calcium-free medium but fail in normalizing inhibited protein secretion during calcium deprivation. Bt2cGMP neither increases basal nor stimulated volume and protein secretion. The demonstrated influence of Bt2cAMP and theophylline on ductal volume and acinar protein secretion accomplishes two criteria, as suggested by Sutherland, for cAMP as second messenger for secretin and CCK or acetylcholine as well.  相似文献   

16.
Secretin not only increases ductular bile secretion in vivo in rats after bile duct ligation (BDL) [1], but also increases cAMP levels and stimulates exocytosis in isolated cholangiocytes [2]. Although we have previously reported that secretin receptor mRNA was upregulated in cholangiocytes after BDL [3], the cholangiocyte secretin receptor has not been functionally characterized or quantified after BDL. In this work, we used a novel, photolabile and biologically active analogue of secretin to quantify and characterize secretin receptors on cholangiocytes isolated from normal and BDL rats. The cholangiocyte secretin receptor bound radioligand with high affinity and in a rapid, reversible, and temperature-dependent manner. While receptors on cholangiocytes from normal and BDL rats were functionally and biochemically identical, receptor density on cholangiocytes was increased 5-fold following BDL. The combination of increased cell number with increased functional secretin receptors per cell is due to the fact that cholangiocyte hyperplasia represents a reactive response to a cholestatic condition and this effort on the part of the organism to maintain bile secretion, explains the increased hormone-responsive choleresis observed after BDL and may reflect an adaptive response of the organism to cholestasis.  相似文献   

17.
Since ancient times, bile secretion has been considered vital for maintaining health. One of the main functions of bile secretion is gastric acid neutralization with biliary bicarbonate during a meal or Pavlovian response. Although the liver has many extrinsic and intrinsic nerve innervations, the functional role of these nerves in biliary physiology is poorly understood. To understand the role of neural regulation in bile secretion, our recent studies on the effect of bombesin, a neuropeptide, on bile secretion and its underlying mechanisms will be reviewed. Using isolated perfused rat livers (IPRL) from both normal and 2 week bile duct ligated rats, as well as hepatocyte couplets and isolated bile duct units (IBDU) from normal rat livers, bombesin was shown to stimulate biliary bicarbonate and fluid secretion from bile ducts. Detailed pH studies indicated that bombesin stimulated the activity of Cl-/HCO3- exchanger, which was counterbalanced by a secondary activation of electrogenic Na+/HCO3- symport. Quantitative videomicroscopic studies showed that bombesin-stimulated fluid secretion in IBDU was dependent on Cl- and HCO3- in the media, anion exchanger(s), Cl- and K+ channels, and carbonic anhydrase, but not on the microtubular system. Furthermore, this bombesin response is inhibited by somatostatin but not substance P. Finally, studies of secondary messengers in isolated cholangiocytes and IBDU indicated that bombesin had no effect on intracellular cAMP, cGMP, or Ca++ levels in cholangiocytes. These results provide evidence that neuropeptides such as bombesin can directly stimulate fluid and bicarbonate secretion from cholangiocytes by activating luminal Cl-/HCO3- exchange, but by different mechanisms from those established for secretin. These findings, in turn, suggest that neuropeptides may play an important regulatory role in biliary transport and secretion. Thus, this neuropeptidergic regulation of bile secretion may provide a plausible mechanism for the bicarbonate-rich choleresis seen with meals or Pavlovian response.  相似文献   

18.
BACKGROUND INFORMATION: We have previously showed that: (i) cholangiocytes contain AQP1 (aquaporin 1) water channels sequestered in intracellular vesicles; and (ii) upon stimulation with choleretic agonists such as secretin or dibutyryl-cAMP (dbcAMP), the AQP1 vesicles move via microtubules to the apical cholangiocyte membrane to facilitate osmotically driven, passive water movement (i.e. ductal bile secretion). The aim of the present study was to determine which proteins and mechanisms regulate AQP1 trafficking in cholangiocytes. RESULTS: Using polarized cultured NMCs (normal mouse cholangiocytes) or NRCs (normal rat cholangiocytes) and affinity-purified antibodies, we performed immunofluorescent confocal microscopy on fixed cells or immunoblotting on cell lysates for actin, tubulin, kinesin and dynein, proteins known to regulate intracellular vesicle trafficking. By immunostaining, the appropriate orientation of the actin (i.e. sub-apical) and tubulin (i.e. generalized) cytoskeleton was apparent; kinesin and dynein displayed a homogeneous punctate distribution. Immunoblotting showed kinesin and dynein to be present in both cholangiocyte lysates and in isolated AQP1-containing vesicles. We utilized real-time fluorescence confocal microscopy of NMCs transfected with a GFP (green fluorescent protein)-AQP1 fusion construct in the presence and absence of dbcAMP. CONCLUSIONS: Our results provide additional insights into the potential molecular mechanisms of ductal bile secretion.  相似文献   

19.
The secretory response of hepatic bile and exocrine pancreas to gastrointestinal peptides has been studied in chronically cannulated sheep. Pancreatic juice flow and protein output were evoked dose dependently by intraportal injection of secretin, CCK-8, caerulein, VIP and neurotensin. However, biliary secretion was evoked by only secretin. Biliary and pancreatic exocrine secretions were enhanced by delivered gastric juice into the duodenum as followed by the increased plasma concentration of immunoreactive secretin (IRS). Results suggest that secretin is the major peptide that regulates pancreatic exocrine secretion and hepatic bile production in the sheep.  相似文献   

20.
Thirty years ago, De Bold et al. (20) reported that atrial extracts contain some biologically active peptides, which promote a rapid and massive diuresis and natriuresis when injected in rats. It is now clear that the heart also exerts an endocrine function and in this way plays a key role in the regulation of cardiovascular and renal systems. The aim of this review is to discuss some recent insights and still-debated findings regarding the cardiac natriuretic hormones (CNHs) produced and secreted by cardiomyocytes (i.e., atrial natriuretic peptide and B-type natriuretic peptide). The functional status of the CNH system depends not only on the production/secretion of CNHs by cardiomyocytes but also on both the peripheral activation of circulating inactive precursor of natriuretic hormones and the transduction of the hormone signal by specific receptors. In this review, we will discuss the data supporting the hypothesis that the production and secretion of CNHs is the result of a complex integration among mechanical, chemical, hemodynamic, humoral, ischemic, and inflammatory inputs. The cross talk among endocrine function, adipose tissue, and sex steroid hormones will be discussed more in detail, considering the clinically relevant relationships linking together cardiovascular risk, sex, and body fat development and distribution. Finally, we will review the pathophysiological role and the clinical relevance of both peripheral maturation of the precursor of B-type natriuretic peptides and hormone signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号